TOLERANCE AND REVERSE TOLERANCE TO HALOPERIDOL CATALEPSY INDUCED BY THE DIFFERENCE OF ADMINISTRATION INTERVAL IN MICE

Yoshikatsu MASUDA, Shigeo MURAI and Tadanobu ITOH

Department of Pharmacology, School of Dentistry, Iwate Medical College, Morioka 020, Japan

Accepted July 24, 1982

Although it is known that haloperidol (HP) induces catalepsy in animals, there is disagreement among various authors as to whether tolerance develops (1-3) or not (4-6) by repeated administration of this drug. In order to elucidate these conflicting results, the present study was carried out by repeated administration of various doses of HP at different intervals.

The cataleptic action of HP was tested on ninety ddY strain male mice (initially weighing 20-22 g). The animals were housed in the colony cage at a constant temperature of 24±1°C under a 12-hr light/dark cycle and allowed free access to mouse biscuits (Oriental Yeast Co.) and water at all times. HP (Shionogi Seiyaku) was dissolved at the concentration of 1 mg/1 ml of 0.1 M tritaric acid and further diluted with a saline solution for administering as an aqueous solution in a volume of 0.1 ml per 10 g mouse. HP at 0.075, 0.3, 0.6, 1.2 and 4.8 mg/kg were orally administered at three different intervals: daily (successive administration), every 2 and 4 days (intermittent administration), and at about 10 a.m. for 21 days. Each group consisted of 6 mice. Catalepsy was evaluated 3 hr after administration of HP. The duration of the unnatural posture that a mouse showed when his left forepaw was placed on a horizontal bar (1.2 mm diameter) which was suspended 1.3 cm above a platform was measured to evaluate the intensity of HP catalepsy. The left forepaw was placed on the bar four times, the maximum allowable duration for each trial being 300 sec. The maximum duration among 4 trials was recorded. The statistical significance of differences in the results was calculated according to the Student's t-test.

In repeated administration of HP at 0.075 and 0.3 mg/kg, no modification of the bar time (i.e., the duration of unnatural posture) was observed for any of the administration intervals (Fig. 1, upper panel). In the case of 0.6 mg/kg HP, the value of the bar time did not change during the period of experiment with the successive administration, but it increased in response to the number of administrations with the intermittent administration. The bar time on the 21st day, 146±16 sec for the 2 day interval and 215±57 sec for the 4 day interval, significantly increased in comparison with those on the first day of the experiment, 60±7 sec and 73±9 sec, respectively (Fig. 1, middle panel). In the case of repeated administration of HP at 1.2 and 4.8 mg/kg, the bar time showed a biphasic time course with the successive administration (Fig. 1, lower panel). Namely, the bar time clearly decreased within 2-3 days after HP treatment, then showed a tendency to recover from these decrements, but even on the 21st day, did not return up to the initial level (P<0.05). On the other hand, the bar time increased in response to
the number of administrations with the intermittent administration of HP at 1.2 and 4.8 mg/kg. This tendency was clearer when HP was administered every 4 days than every 2 days.

Figure 2 shows the comparison of the dose response curve of cataleptic action on the 21st day of repeated administration with that on the first day. The modification of cataleptic action caused by the repeated administration was recognized not at doses of HP at 0.075 and 0.3 mg/kg, but at doses of HP at 0.6, 1.2 and 4.8 mg/kg. The mode of the modification to HP catalepsy varied with the administration intervals, that is, a tolerance developed with the successive administration, whereas a reverse tolerance developed with the intermittent administration.

As reason for the disagreement between former results and ours concerning tolerance to HP catalepsy judging from the results of this experiment, it is conceivable that in the former reports, not enough consideration was given to the doses or the administration interval in addition to the difference of the experimental method. In this experiment, it was noted that when HP was administered repeatedly at doses above 0.6 mg/kg, the intensity of cataleptic action decreased in the successive administration; on the contrary, it increased in the intermittent administration. Phenomena similar to the latter have been reported in the accelerating effect on ambulatory activity of cocaine in rats and amphetamine in mice (7, 8) and the inhibitory effect of HP on avoidance response in rats (9); but reports as observed in this experiment, an effect of drug divided into two tendencies (tolerance and reverse tolerance) according to the difference in the administration interval, have not been published to date. The major mechanism of action of neuroleptics in the production of catalepsy...
has been assumed to be blockade of post-
synaptic dopaminergic receptor sites (10).
Some workers showed that when mice were
-treated with neuroleptics, an initial period of
receptor blockade was replaced by receptor
supersensitivity within a few days (11, 12).
The mechanism of the phenomena observed
in this experiment is unknown, but it can be
considered that the supersensitivity phase
which appears after withdrawal of HP may
participate in the reverse tolerance produced
by the intermittent administration.

REFERENCES
1) Asper, H., Baggiolini, M., Burki, H.R., Lauener,
H., Ruch, W. and Stille, G.: Tolerance phe-
nomena with neuroleptics catalepsy, apomor-
phine stereotypes and striatal dopamine
metabolism in the rat after single and repeated
administration of loxapine and haloperidol.
2) Gessa, G.L. and Tagliamonte, A.: Effect of
methadone and dextromoramide on dopamine
metabolism. Comparison with haloperidol and
amphetamine. Neuropharmacology 14, 913-
920 (1975)
3) Ezrin-Waters, C. and Seeman, P.: Tolerance to
haloperidol catalepsy. Eur. J. Pharmacol. 41,
321-327 (1977)
4) György, L., Pfeifer, K.A. and Hajman, B.: Modifica-
tion of certain central nervous effects of haloperidol during long-term treatment in
the mouse and rat. Psychopharmacologia
(Berlin) 16, 223-233 (1969)
5) Nielsen, I.M., Fjalland, B., Pedersen, V. and
Nymark, M.: Pharmacology of neuroleptics
upon repeated administration. Psychophar-
macologia (Berlin) 34, 95-104 (1974)
6) Puri, S.K. and Lal, H.: Tolerance to the behav-
ioral and neurochemical effects of haloperidol and morphine in rats chronically
treated with morphine or haloperidol. Naunyn
Schmiedebergs Arch. Pharmacol. 282, 155-
170 (1974)
7) Post, R.M. and Rose, H.: Increasing effects of
repetitive cocaine administration in the rat.
Nature 260, 731-732 (1976)
8) Ohashi, K. and Tadokoro, S.: Effects of
thyroidectomy on amphetamine-induced ac-
celeration of locomotor activity in mice. Japan.
J. Pharmacol. 26, 621-624 (1976)
9) Hayashi, T. and Tadokoro, S.: Effect of drug
changed by repeated administration, and
environment. Seibutsu Kagaku 32, 75-82
10) Sanberg, P.R.: Haloperidol-induced catalepsy
is mediated by postsynaptic dopamine receptor.
11) Vonvoigtlander, P.F., Losey, E.G. and
Triezenberg, H.J.: Increased sensitivity to
dopaminergic agents after chronic neuroleptic
(1975)
12) Nielsen, I.M. and Christensen, A.V.: Long term
effect of neuroleptic drug. J. Pharmacol. 6,
277-282 (1975)