Calcitonin-Induced Analgesia: An Unusual Hormone Specificity

Toshihiko MORIMOTO, Masaharu OKAMOTO and Masao KOIDA
Department of Pharmacology, Faculty of Pharmaceutical Sciences,
Nagasaki University, Nagasaki 852, Japan

Hiromichi NAKAMUTA*
Department of Pharmacology, Faculty of Pharmaceutical Sciences,
Setsunan University, Hirakata 573-01, Japan

Ronald C. ORLOWSKI
Armour Pharmaceutical Company, Kankakee, Illinois 60901, U.S.A.

Accepted September 17, 1984

Upon direct injection into the central nervous system of laboratory mammals, salmon calcitonin (sCT) is known to produce a variety of effects: antinociception (1), anorexia (2), and achlorhydria (3). Comparative studies (4, 5) on the anorectic potency of calcitonins of various animal origins have provided the results supporting the classical concept established for the hypocalcemic activity that the hormone of fish origin is biologically far more potent than the mammalian congeners (6).

However, it was recently noticed that in the dose which did develop complete anorexia in rats, sCT failed to induce antinociception, while porcine calcitonin (pCT) even in the same molar dose appeared to elicit antinociception (7). This is an unexpected observation from the above concept.

Wistar male rats weighing 250–350 g were used. sCT (4500 U/mg) was the synthetic product and pCT (170 U/mg) the natural one from the Armour Pharmaceutical Co. (Kankakee, IL, U.S.A.). Intracerebroventricular cannulation was done as described previously (4). The antinociceptive activity was evaluated by the method of Randall and Selitto (8). Baker’s yeast (20 w/v % in saline, 0.10 ml/rat) was injected into either one of the hindlimbs. Two hr later, peptide in vehicle (0.1 M ammonium acetate buffer, pH 4.7) or vehicle alone was administered intracerebroventricularly or subcutaneously.

* To whom reprint requests should be addressed.

The serum Ca level was estimated by the method of Gitelman (9).

As shown in Fig. 1, the anorectic dose of sCT (0.062 nmol/rat), which usually resulted in complete anorexia lasting about 24 hr, was unable to increase the response threshold. This dose of sCT is known to cause long-lasting hypocalcemia, possibly by leaking into the systemic circulation and acting peripherally (10). In the doses tested, pCT did not induce either anorexia or hypocalcemia, but elevated the response threshold to
a small but significant extent.

Even when injected systemically, pCT was found to be active. Subcutaneous injection of 1.6 nmol/kg produced significant anti-nociception with a rapid onset and at least 30 min duration (Fig. 2). In contrast, sCT (1.6 nmol/kg) was again inactive in such a high dose level that decreased the serum Ca2+ level from 9.7 mg/dl to 8.6 at 1 hr after injection.

The antinociceptive effect of pCT developed only on the limb into which yeast was injected. pCT has so far failed to increase the response threshold of the untreated hindlimb.

Though more detailed studies using other assay methods of antinociception are to be done, the results reported herein suggest that pCT even after central injection may exert its antinociceptive effect by acting on the peripheral site, and it is possible that the underlying mechanism is quite different from the ones conceptualized for the other actions of calcitonins (11, 12).

Acknowledgement: This work was supported in part by a Grant-in Aid for Scientific Research to M.K. (No. 58570931) from the Ministry of Education, Science and Culture, Japan, and also by financial aid to M.K. from Dr. Harumasa Toya of Sawai Pharmaceutical Co. (Osaka, Japan).

References