Effects of Indomethacin, Endothelium-Denudation, Methylene Blue and L-N\(^G\)-Monomethyl Arginine on the Vasoactive Effects of Endothelin-3

Noboru Fukuda, Yoichi Izumi, Masayoshi Soma, Yoshiyasu Watanabe, Masashi Watanabe, Michinobu Hatano, Ichiro Sakuma and Hisakazu Yasuda

The 2nd Department of Internal Medicine, Nihon University School of Medicine, Ooyaguchi-kami 30-1, Itabashi-ku, Tokyo 173, Japan

Department of Cardiovascular Medicine, Hokkaido University School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060, Japan

Received September 17, 1990 Accepted January 7, 1991

ABSTRACT — To clarify the mechanisms underlying the vasoactive effects of endothelin-3 (ET-3), we examined the effects of indomethacin, endothelium-denudation, methylene blue and L-N\(^G\)-monomethyl arginine (L-NMMA) on the perfusion pressures of isolated rat mesenteric arteries infused with ET-3. ET-3 at \(10^{-15} - 10^{-8}\) M elicited significant vasodilations in a dose-related manner, in which \(10^{-9}\) and \(10^{-8}\) M ET-3 caused biphasic pressure changes involving a transient dilation and subsequent vasoconstriction. Five micromolar indomethacin did not affect the vasodilations and vasoconstrictions induced by ET-3. In endothelium-denuded arteries, \(10^{-13} - 10^{-8}\) M ET-3 elicited significant vasoconstriction in a dose-related manner without any vasodilation. In the presence of 30 \(\mu\)M methylene blue, the vasodilations induced by ET-3 disappeared. In the presence of 100 \(\mu\)M L-NMMA, \(10^{-15} - 10^{-8}\) M ET-3 elicited significant vasoconstriction in a dose-related manner without any vasodilation. In the presence of \(10^{-8}\) M ET-3, the vasodilations by ET-3 existed only at \(10^{-8}\) M ET-3. These data suggest that the vasodilating effects of low doses of ET-3 through the endothelium overcome the vasoconstricting effects, and that the vasodilating effects of ET-3 are associated with an endothelium-derived relaxing factor as an endothelium-derived nitric oxide.

Endothelin (ET) was recently isolated from porcine aortic endothelial cells and was reported to be a potent vasoconstrictor (1). Yanagisawa et al. (1) found that ET constricted rat aortic strips in a dose-dependent manner, where the initial dose for constriction was \(10^{-8}\) M and the EC\(_{50}\) was \(5-6 \times 10^{-8}\) M. However, it has been reported that intravenous bolus injection of ET (0.1 to 3 nM/kg) causes a transient, dose-related depressor response (2, 3). Even in in vitro experiments, vasodilating effects of ET, particularly at low doses, have been demonstrated (4-6).

ET can be distinguished into three different amino acid residues called ET-1, ET-2 and ET-3. It has been reported that different abilities for exerting vasoactive effects exist within this ET family: ET-3 has more potent vasodilating effects compared to ET-1 and ET-2, whereas ET-3 displays lesser vasoconstricting effects (7).

We have also found that low doses of ET-3 elicit continuous vasodilations, whereas high
doses (above 10^{-9} M) of ET-3 induce a transient vasodilation and subsequent increase in pressure in rat mesenteric arteries (6). It seems likely therefore that low doses of ET-3 have only vasodilating effects, whereas high doses of ET-3 exert vasodilating as well as vasoconstricting effects.

There are few reports concerning the mechanism underlying the different vasoactive effects of low and high doses of ET-3. In an attempt to evaluate the vasoactive effects of ET-3, we examined the effects of indomethacin as an inhibitor of prostaglandin synthesis, endothelium-denudation, methylene blue as a guanylate cyclase inhibitor, and L-N^G^-monomethyl arginine (L-NMMA) as an inhibitor of the synthesis of endothelium-derived nitric oxide (NO) on the perfusion pressures of rat mesenteric arteries infused with ET-3.

MATERIALS AND METHODS

Male Wistar rats weighing 250–300 g were used. Preparation of isolated rat mesenteric arteries was performed as described previously (8). The rats were anesthetized with pentobarbital, i.p. The superior mesenteric arteries were separated close to the intestine and were perfused at 3 ml/min using an infusion pump (MP-3, Tokyo Rikakikai, Japan) with Krebs-Henseleit solution gassed with 5% CO₂ in O₂. The perfusion pressure was recorded via the side arm of an arterial cannula employing a pressure transducer (TP-200T, Nihon Kohden, Tokyo). The mesenteric arteries were preperfused for over 60 min and were preconstricted with 100 μM norepinephrine (NE). ET-3 was infused at 1800 μl/hr using a micro infusion pump (SP-5, Nipro, Tokyo).

Indomethacin or methylene blue was dissolved in the perfusion solution. L-NMMA was infused into the mesenteric arteries at 1800 μl/hr using the micro infusion pump. To investigate the role of the endothelium in the vascular response to ET-3, the endothelium was denuded by infusion of Krebs-Henseleit solution containing 0.3% 3-[3-cholamidopropyl]-dimethyl-ammonio]-1-propane sulfonate (CHAPS) for 3 min as described previously by Tesfamariam and Halpen (9). Before the experiments, we confirmed the occurrence of endothelium-denudation of the mesenteric arteries treated with CHAPS based on the absence of any acetylcholine-induced vasodilation of the arteries preconstricted with 100 μM NE.

ET-3 was obtained from the Peptide Institute, Osaka, Japan. Indomethacin, CHAPS and methylene blue were obtained from Sigma Chemical, U.S.A. L-NMMA was synthesized as described previously (10).

Statistical analyses were performed by two way analysis of variance for paired and unpaired data. The results were expressed as the mean ± S.E.

RESULTS

Typical pressor responses of mesenteric arteries preconstricted with 100 μM NE to 10^{-13}, 10^{-9} and 10^{-8} M ET-3 are shown in Fig. 1. Infusion of 10^{-13} M ET-3 elicited a continuous vasodilation until wash out, whereas the vasodilations with 10^{-9} and 10^{-8} M ET-3 were transient, and subsequently, the perfusion pressure with 10^{-8} M ET-3 became gradually elevated.

The preconstriction levels of the mesenteric arterial pressures by 100 μM NE with and without several agents are summarized in Table 1. The preconstriction levels of the arteries by 100 μM NE with 30 μM methylene blue and 100 μM L-NMMA were significantly (P < 0.01) higher than that in the case of no addition.

The effects of 5 μM indomethacin, 0.3% CHAPS, 30 μM methylene blue and 100 μM L-NMMA on the vasodilations and vasoconstrictions of perfused mesenteric arteries infused with ET-3 are illustrated in Fig. 2. ET-3 alone elicited dose-related significant (P < 0.01) vasodilations at 10^{-15}, 10^{-10} M, among which 10^{-9} and 10^{-8} M ET-3 caused biphasic pressure changes involving transient dilations followed by significant (P < 0.01) constrictions. In the presence of 5 μM indomethacin,
Table 1. Mean perfusion pressures of rat mesenteric arteries preconstricted with 100 μM norepinephrine and treated or untreated with several agents.

<table>
<thead>
<tr>
<th>Agent</th>
<th>n</th>
<th>Pressure (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No addition</td>
<td>11</td>
<td>46.6 ± 4.2</td>
</tr>
<tr>
<td>5 μM indomethacin</td>
<td>12</td>
<td>40.7 ± 5.3</td>
</tr>
<tr>
<td>0.3% CHAPS</td>
<td>7</td>
<td>37.1 ± 3.4</td>
</tr>
<tr>
<td>30 μM methylene blue</td>
<td>10</td>
<td>132.8 ± 10.8*</td>
</tr>
<tr>
<td>100 μM L-NMMA</td>
<td>7</td>
<td>73.7 ± 7.3*</td>
</tr>
</tbody>
</table>

Values are the mean ± S.E. CHAPS: 3-[3-Cholamidopropyl]-dimethyl-ammonio]-1-propane sulfonate. L-NMMA: L-N(2)-monomethyl arginine.

10^{-15}–10^{-8} M ET-3 elicited significant (P < 0.01) vasodilations in a dose-related manner, and 10^{-8} M ET-3 subsequently caused a significant (P < 0.05) vasoconstriction as part of a biphasic pressure change. In the mesenteric arteries endothelium-denuded with 0.3% CHAPS, ET-3 did not cause any vasodilation, whereas 10^{-13}–10^{-8} M ET-3 elicited significant (P < 0.05) vasoconstrictions in a dose-related manner. In the presence of 30 μM methylene blue, ET-3 did not induce any significant vasodilation, whereas 10^{-13} (P < 0.05) and 10^{-8} (P < 0.01) M ET-3 caused significant vasoconstrictions. In the presence of 100 μM L-NMMA, ET-3 elicited a significant (P < 0.05) vasodilation only at 10^{-8} M, whereas 10^{-15}–10^{-8} M ET-3 caused significant (P < 0.05) vasoconstrictions in a dose-related manner (Fig. 2).

Fig. 1. Representative recordings of typical changes in the perfusion pressure of mesenteric arteries preconstricted with 100 μM norepinephrine after infusions of 10^{-13}, 10^{-9} and 10^{-8} M endothelin (ET)-3. The negative spikes are artifacts caused by transient discontinuance of the ET infusions.

Fig. 2. Effects of 5 μM indomethacin, 0.3% 3-[3-Cholamidopropyl]-dimethyl-ammonio]-1-propane sulfonate (CHAPS), 30 μM methylene blue and 100 μM L-N(2)-monomethyl arginine (L-NMMA) on the vasodilations (open columns) and vasoconstrictions (shaded columns) of rat mesenteric arteries with 100 μM norepinephrine and infused with graded doses of endothelin-3 (ET-3). The levels of vasodilation and vasoconstriction after infusion of ET-3 were determined as the levels of the peak decreases in perfusion pressure, and the levels of the perfusion pressure at 10 min after the beginning of infusion, respectively. Vertical bars indicate the mean ± S.E. The P values (*: P < 0.05, **: P < 0.01) refer to comparisons with the preconstriction levels.
Table 2. Comparisons of the degrees of vasodilation and vasoconstriction induced by 10⁻⁸ M endothelin-3 in mesenteric arteries preconstricted with 100 μM nor-epinephrine and treated or untreated with several agents

<table>
<thead>
<tr>
<th>Agent</th>
<th>n</th>
<th>Vasodilation (%)</th>
<th>Vasoconstriction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No addition</td>
<td>11</td>
<td>21.6 ± 2.9</td>
<td>19.9 ± 2.3</td>
</tr>
<tr>
<td>5 μM indomethacin</td>
<td>12</td>
<td>17.5 ± 2.6</td>
<td>11.7 ± 4.3</td>
</tr>
<tr>
<td>0.3% CHAPS</td>
<td>7</td>
<td>0 ± 0*</td>
<td>42.7 ± 9.6*</td>
</tr>
<tr>
<td>30 μM methylene blue</td>
<td>10</td>
<td>1.7 ± 0.8**</td>
<td>12.2 ± 2.5*</td>
</tr>
<tr>
<td>100 μM L-NMMA</td>
<td>7</td>
<td>5.6 ± 2.2**</td>
<td>29.7 ± 4.8</td>
</tr>
</tbody>
</table>

Values are the mean ± S.E. CHAPS: 3-{[(3-Cholamidopropyl)-dimethyl-ammonio]-1-propane sulfonate, L-NMMA: L-N⁴-monomethyl arginine. *: P < 0.05, **: P < 0.01 versus values for no addition.

and vasoconstriction between cases with and without 5 μM indomethacin. On the other hand, treatments with 0.3% CHAPS significantly (P < 0.05) increased the degree of vasoconstriction as compared to the case of no addition. In the presence of 30 μM methylene blue, the degrees of vasodilation and vasoconstriction were significantly (P < 0.05) reduced as compared to no addition. In the presence of 100 μM L-NMMA, the degree of vasodilation was significantly (P < 0.01) lower and the degree of vasoconstriction was rather high, but not significantly so, as compared to no addition (Table 2).

DISCUSSION

In the present experiments, 10⁻¹⁵ - 10⁻⁸ M ET-3 elicited vasodilations in a dose-related manner in rat mesenteric arteries. In particular, low doses, 10⁻¹⁵ - 10⁻¹¹ M, of ET-3 elicited continuous vasodilations without any vasoconstriction, whereas 10⁻⁹ and 10⁻⁸ M ET-3 elicited transient vasodilations and subsequent vasoconstrictions in a biphasic pattern.

The mechanism of the vasodilating effects of ET-3 has been reported to involve contributions of endothelium-derived relaxing factor (EDRF) (4, 6, 11) or prostaglandins (12). Warner et al. (4) observed that vasodilations in isolated perfused mesenteric arteries of the rat in response to 1 - 300 pM ET-3 were inhibited by removal of the endothelium, methylene blue, or hemoglobin, suggesting that the vasodilations were due to the release of EDRF. We have found that the vasodilating effects of low doses of ET-3 on mesenteric arteries were dependent on the extracellular Ca²⁺ and the endothelium, and they were accompanied by elevated levels of cyclic GMP derived from the arteries, also suggesting the possibility of a contribution of EDRF (6).

Since the degrees of vasodilatation by ET-3 were not reduced by indomethacin in the present experiments, it can be considered that the vasodilating effects of ET-3 are not associated with prostaglandin production.

In the present experiments, ET-3 induced dose-dependent vasoconstrictions of the endothelium-denuded arteries even at 10⁻¹³ and 10⁻¹¹ M, which elicits continuous vasodilations of intact arteries. These data suggest that the vasodilating effects of ET-3 depend on the endothelium, and that the vasodilating effects possibly overcome the vasoconstricting effects of ET-3 at the 10⁻¹³ and 10⁻¹¹ M levels. Even low doses of ET-3 may therefore have vasodilating effects through the endothelium as well as direct vasoconstricting effects on the vascular smooth muscle. It is speculated that different ET-3 receptors may exist on the endothelium and vascular smooth muscle, of which the former displays a high affinity and the latter have a low affinity. Low doses of ET-3 may
act on the endothelium to cause vasodilation, whereas high doses of ET-3 may act on both receptors to provoke biphasic pressure changes.

In the present experiments, the vasodilating effects of ET-3 were inhibited by methylene blue, indicating that such vasodilating effects are associated with EDRF. One EDRF has been identified chemically as nitric oxide (NO) (13). It has been reported that endothelial cells in culture synthesized NO from the terminal guanido nitrogen atom(s) of the amino acid L-arginine (14, 15). It has recently been found that the synthesis of NO and the vasodilating effects of EDRF are inhibited by L-NMMA, an analog of L-arginine (16, 17).

We demonstrated recently that L-NMMA abolished the vasodilation induced by 10^{-13} M ET-3 in rat mesenteric arteries, and that L-arginine, not D-arginine, restored the vasodilation, suggesting that the vasodilating effects of 10^{-13} M ET-3 are associated with endothelium-derived NO (18). We therefore examined the effects of L-NMMA on the vasodilating effects of low and high doses of ET-3 in the present experiments, and found that L-NMMA abolished the vasodilations induced by low doses, below 10^{-9} M, of ET-3 and that 10^{-15} to 10^{-8} M ET-3 elicited vasoconstrictions in a dose-related manner in the presence of L-NMMA. These pressure effects of ET-3 with L-NMMA are similar to those of ET-3 on arteries endothelium-denuded by CHAPS. It is possible that the vasoconstricting effects of ET-3 on the vascular smooth muscle might be uncovered through the action of L-NMMA which inhibited the release of endothelium-derived NO by ET-3.

 Vasodilation by 10^{-8} M ET-3 was observed, but at a significantly reduced level, in the presence of 100μM L-NMMA in the present experiments. It is possible that the effect of 100μM L-NMMA might be still incomplete in inhibiting EDRF release by 10^{-8} M ET-3, since a dose-dependency of EDRF inhibition by L-NMMA has been reported (19). It has been found that ET-3 can stimulate the release of prostacyclin (20, 21). Therefore, the remaining vasodilation by 10^{-8} M ET-3 in the presence of L-NMMA may indicate the possibility that 10^{-8} M ET-3 may have stimulated prostacyclin release. However, there were no differences in the degrees of vasodilation by 10^{-8} M ET-3 between the cases with and without indomethacin in the present experiments, indicating that it is unlikely that prostaglandins contribute to the vasodilating effects of 10^{-8} M ET-3.

L-NMMA, an analog of L-arginine, thus inhibited the vasodilations induced by low and high doses of ET-3 and caused vasoconstrictions even at low doses of ET-3, indicating that the vasodilating effects of low doses of ET-3 through the endothelium overcome the vasoconstricting effects, and that the vasodilating effects of ET-3 are associated with EDRF as an endothelium-derived NO.

REFERENCES

