Effects of Benidipine on Renal Function in Anesthetized Spontaneously Hypertensive Rats

Hideaki Kusaka, Hiroko Nomura and Akira Karasawa

Department of Pharmacology, Pharmaceutical Research Laboratories, Kyowa Hakko Kogyo Co., Ltd.,
1188 Shimotogari, Nagaizumi-cho, Santo-gun, Shizuoka 411, Japan

Received January 19, 1994 Accepted June 16, 1994

ABSTRACT—Effects of benidipine on urine volume, excretion of electrolytes and renal hemodynamics were investigated in anesthetized spontaneously hypertensive rats (SHR). Benidipine at 3 and 10 μg/kg (i.v.) significantly increased urine volume, sodium (Na) and potassium (K) excretion with no change of creatinine clearance (CRE). The increase in K excretion was relatively slight when compared with that in Na excretion. In another series of experiments, the tubular sites of action of benidipine were determined by the lithium clearance (CL) technique and the stop-flow method. Benidipine at 3 μg/kg (i.v.) increased CL, decreased creatinine concentration and increased Na concentration in the stop-flow urine from the distal nephron. These results suggest that benidipine produces diuresis and natriuresis by the inhibition of water and Na re-absorption at both the proximal tubule and the distal nephron. Benidipine increased p-aminohippuric acid clearance, but not CRE, at doses of 3 and 10 μg/kg (i.v.), suggesting that benidipine dilates the glomerular efferent arteriole as well as the afferent arteriole. It is, therefore, expected that benidipine does not cause intraglomerular hypertension and has a beneficial effect in progressive renal disease.

Keywords: Calcium antagonist, Diuretic effect, Renal hemodynamics

Benidipine is a 1,4-dihydropyridine calcium antagonist (1) that has long-lasting antihypertensive and antianginal activities (2, 3). Additionally, benidipine shows diuretic and natriuretic effects in saline-loaded normotensive rats (4).

In general, calcium antagonists have diuretic and natriuretic properties (5–9). However, the mechanism for the diuretic and natriuretic effects of calcium antagonists is complicated as they influence renal blood flow (RBF), glomerular filtration rate (GFR), glomerular mesangium and renal tubular function. Marre et al. (5) reported that in an isolated rat kidney preparation, nifedipine produced significant diuresis and natriuresis with no change in the GFR. Nicardipine infused intrarenally into hydropenic or hydrated dogs evoked diuretic and natriuretic actions by inhibiting the reabsorption of water and sodium (Na) at the proximal tubules with an increase in GFR and RBF (6). In anesthetized spontaneously hypertensive rats (SHR), amlodipine produced diuresis and natriuresis by inhibition of the reabsorption of water and Na at the loop of Henle, distal tubule and collecting ducts (7). On the other hand, the diuretic and natriuretic dose of felodipine had no effect on GFR; and in a micropuncture experiment, this drug inhibited the reabsorption of water and Na at the distal tubule and the collecting duct, but not at the proximal tubule or the loop of Henle (8). Thus, the mechanism for the diuretic and natriuretic effect of the calcium antagonist is still controversial. The mechanism of action may be different among the various calcium antagonists.

In the present study, we investigated the effects of benidipine on GFR, renal plasma flow, urine volume and excretions of electrolytes in anesthetized SHR by a clearance study. Additionally, the tubular sites of action were investigated by a lithium clearance study and the stop-flow experiment.

MATERIALS AND METHODS

Experimental animals

Male spontaneously hypertensive rats (SHR; Hoshino Experimental Animals, Saitama) weighing 325–450 g were used in the present study. The animals were kept at 22°C and in a 12-hr light dark cycle. They had free access to tap water and commercial chow prior to the experiment.
Drugs

Benidipine (hydrochloride, KW-3049) was synthesized in our laboratories. Creatinine (CRE) and p-aminohippuric acid (PAH) were purchased from Wako Pure Chemical Industries, Ltd. (Osaka) and Sigma Chemical Co. (St. Louis, MO, USA), respectively. All other chemicals and solvents were used in their analytical pure form. Benidipine was dissolved in saline containing Tween 80 (0.13 mg/ml) (vehicle).

Clearance study

SHR were divided into the 4 groups, consisting of 7 SHR in each group; i.e., one group treated with vehicle (control) and the 3 groups treated with benidipine (1, 3 and 10 µg/kg). SHR were anesthetized with pentobarbital Na (50 mg/kg, i.p.). The left carotid artery, right femoral vein and the urinary bladder were cannulated for blood collection, infusion and urine collection, respectively. Saline containing CRE (0.01 mg/ml), PAH (5 mg/ml) and pentobarbital Na (2 mg/ml) was infused with a constant flow infusion pump (Pump 22; Harvard Apparatus, Inc., South Natick, MA, USA) at a rate of 3 ml/rat/hr. After equilibration for 90 min, the vehicle was intravenously administered to all SHR, and urine was collected during a 1-hr control period. After the control period, benidipine (1, 3 or 10 µg/kg) was intravenously administered to SHR, and urine was collected during a 1-hr clearance period. In the control group, the vehicle was intravenously administered again. About 0.7 ml of blood was collected into a microtube containing heparin at the midpoint of each urine collection period, and plasma was separated immediately. Benidipine and the vehicle were intravenously administered to SHR at a volume 0.5 ml/kg. Concentrations of CRE in plasma and urine were determined by an autoanalyzer (AU510; Olympus, Tokyo). Concentrations of Na and potassium (K) in the plasma and urine were determined by flame photometry (775-A; Hitachi Ltd., Tokyo). Concentrations of PAH in the plasma and urine were determined by the Bratton-Marshall method (10). Standard formulas were used to calculate CRE clearance (CCRE), as an index of GFR and to calculate PAH clearance (CPAH), as an index of RPF. Reabsorption rates of water, Na and K at tubular sites were calculated from the following formulas:

Reabsorption rate of water (%)
\[\frac{C_{\text{CRE}} \times \text{Urine volume}}{C_{\text{CRE}}} \times 100 \]

Reabsorption rate of Na (%)
\[\frac{C_{\text{CRE}} \times \text{Plasma Na (µEq/ml)}}{C_{\text{CRE}}} \times 100 \]

Lithium clearance (C_Li) study

C_Li study was performed according to the previous methods (9, 11). SHR were divided into the 2 groups, consisting of 5 SHR in each group; i.e., one group treated with vehicle (control) and the other group treated with benidipine (3 µg/kg). SHR were anesthetized with pentobarbital Na (50 mg/kg, i.p.). The left carotid artery, right femoral vein and the urinary bladder were cannulated for blood collection, infusion and urine collection, respectively. Saline containing lithium (Li) carbonate (0.28 mg/ml), CRE (0.0046 mg/ml) and pentobarbital Na (3.7 mg/ml) was infused with the constant flow infusion pump at rate of 2.16 ml/rat/hr. After equilibration for 2 hr, urine and plasma were collected according to the same procedure as described before. The dose of benidipine examined was 3 µg/kg (i.v.), which induced diuresis and natriuresis in the preceding clearance study. Concentrations of CRE, Na, K in plasma and urine were determined as previously described. The Li concentrations in the plasma and urine were determined by flame photometry. The standard formulas were used to calculate C_CRE and C_Li.

Stop-flow experiments

Stop-flow experiments were performed, using 4 SHR in each group, according to the previous method (11). SHR were anesthetized with pentobarbital Na (50 mg/kg, i.p.). After ligating the vascular pedicle of the right kidney, polyethylene catheters were cannulated into the left carotid artery, right femoral vein and the left ureter for blood collection, infusion and urine collection, respectively. After the surgery was completed, saline containing 0.15 g/ml mannitol and 0.005 mg/ml CRE was infused with the constant flow infusion pump at a rate of 30 ml/kg/hr. To maintain the condition of anesthesia, pentobarbital Na at 25 mg/kg/hr was continuously infused into the tail vein. After equilibration for 30 min, the vehicle was administered to all SHR. Five minutes after the administration of vehicle, the left ureter was clamped for 10 min. Upon release of occlusion, 15 samples of 3 drops of urine (about 40 µl) were collected into microtubes. About 0.7 ml of blood was collected immediately into a microtube containing heparin after the urine collection, and the plasma was separated. After recovery, the same procedure was repeated 5 min after the administration of benidipine (3 µg/kg, i.v.) to estimate the influence of benidipine on the stop-flow pattern. Thus, the left ureter was clamped two times in each animal. Benidipine and the vehicle were
intravenously administered to SHR at a volume of 0.5 ml/kg. Concentrations of CRE and Na in the plasma and urine were determined. The following parameters were calculated:

\[\text{[U/P]}_{\text{CRE}} = \frac{\text{[urinary CRE concentration]}}{\text{[plasma CRE concentration]}} \]

which estimates the reabsorption of water at the distal nephron (12, 13);

\[\text{[U/P]}_{\text{Na}}/\text{[U/P]}_{\text{CRE}} = \frac{\text{[urinary Na concentration]}}{\text{[plasma Na concentration]}}/\text{[U/P]}_{\text{CRE}}, \]

which estimates the reabsorption of Na at the distal nephron (12, 13).

Statistical analyses

Data are presented as means±S.E. Statistical significance was estimated by the paired t-test. A P-value of less than 0.05 was considered statistically significant.

RESULTS

Clearance study

The results of the clearance study are shown in Table 1. No significant difference was found in the basal value of each parameter among all the groups. Benidipine at doses of 3 and 10 µg/kg (i.v.) produced marked increases in urine volume and Na excretion. Benidipine also produced a slight but significant increase in K excretion. However, the increase in K excretion was relatively slight when compared with that in Na excretion. Benidipine at 3 and 10 µg/kg (i.v.) caused a significant increase in CPAH, with little increase in CCRE, resulting in a significant decrease of the filtration fraction (FF). Benidipine at these doses, which exhibited diuretic and natriuretic effects, significantly inhibited the reabsorption of water, Na and K at the tubular site.

CLi study

Table 2 shows the results of the CLi study. In the present study, the Li concentration in plasma was 0.35 to 0.72 mEq/l. No significant difference was found in the basal value of each parameter between the control and the benidipine (3 µg/kg, i.v.)-treated group. Benidipine at 3 µg/kg (i.v.) significantly increased the urine volume and Na excretion without any change of CCRE, as was the case with the clearance study. Benidipine at this dose significantly increased CLi.

Stop-flow experiments

Figure 1 shows \[\text{[U/P]}_{\text{CRE}} \] and \[\text{[U/P]}_{\text{Na}}/\text{[U/P]}_{\text{CRE}} \] before and after the administration of benidipine. In the preliminary experiment, in which CRE (50 mg/kg, i.v.) was administered just before releasing the clamp, the highest concentration of CRE in the urine was observed in fraction No. 15. The highest concentration of CRE indicates roughly the entry of new glomerular filtrate. In the control experiment, when the vehicle was repeatedly administered, sequential stop-flow patterns in all animals were found to be reproducible (data not shown). Benidipine (3 µg/kg, i.v.) significantly decreased \[\text{[U/P]}_{\text{CRE}} \] and increased \[\text{[U/P]}_{\text{Na}}/\text{[U/P]}_{\text{CRE}} \] in specimens from the distal nephron.

Table 1. Effects of benidipine on renal function in anesthetized SHR

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control before</th>
<th>Control after</th>
<th>Benidipine, 1 µg/kg (i.v.) before</th>
<th>Benidipine, 1 µg/kg (i.v.) after</th>
<th>Benidipine, 3 µg/kg (i.v.) before</th>
<th>Benidipine, 3 µg/kg (i.v.) after</th>
<th>Benidipine, 10 µg/kg (i.v.) before</th>
<th>Benidipine, 10 µg/kg (i.v.) after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine volume (ml/kg/hr)</td>
<td>2.13 ± 0.53</td>
<td>2.30 ± 0.51</td>
<td>2.08 ± 0.53</td>
<td>2.48 ± 0.50</td>
<td>1.98 ± 0.31</td>
<td>3.93*** ± 0.50</td>
<td>2.30 ± 0.63</td>
<td>5.45** ± 0.94</td>
</tr>
<tr>
<td>Na excretion (µEq/kg/hr)</td>
<td>380.9 ± 60.1</td>
<td>385.2 ± 60.5</td>
<td>362.0 ± 57.4</td>
<td>454.6 ± 88.4</td>
<td>377.2 ± 93.4</td>
<td>865.9*** ± 142.5</td>
<td>424.8 ± 63.1</td>
<td>1185.5*** ± 175.3</td>
</tr>
<tr>
<td>K excretion (µEq/kg/hr)</td>
<td>233.9 ± 10.9</td>
<td>243.1 ± 11.3</td>
<td>221.0 ± 13.2</td>
<td>249.1 ± 18.2</td>
<td>228.8 ± 16.0</td>
<td>291.8* ± 13.6</td>
<td>245.0 ± 5.6</td>
<td>322.7*** ± 14.2</td>
</tr>
<tr>
<td>CCRE (ml/kg/hr)</td>
<td>129.1 ± 5.8</td>
<td>139.4 ± 4.9</td>
<td>131.9 ± 7.0</td>
<td>131.2 ± 7.8</td>
<td>126.5 ± 6.7</td>
<td>142.4 ± 7.5</td>
<td>130.3 ± 4.4</td>
<td>144.4 ± 8.7</td>
</tr>
<tr>
<td>CPAH (ml/kg/hr)</td>
<td>873.5 ± 72.1</td>
<td>1897.7 ± 48.1</td>
<td>793.6 ± 41.4</td>
<td>879.6 ± 40.6</td>
<td>904.8 ± 68.7</td>
<td>1493.1*** ± 86.0</td>
<td>845.4 ± 44.3</td>
<td>1909.9*** ± 176.2</td>
</tr>
<tr>
<td>FF</td>
<td>0.152 ± 0.01</td>
<td>0.159 ± 0.013</td>
<td>0.167 ± 0.008</td>
<td>0.150*** ± 0.009</td>
<td>0.142 ± 0.006</td>
<td>0.098** ± 0.005</td>
<td>0.155 ± 0.078</td>
<td>0.078*** ± 0.006</td>
</tr>
<tr>
<td>Reabsorption rate (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Water before</th>
<th>Water after</th>
<th>Na before</th>
<th>Na after</th>
<th>K before</th>
<th>K after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>98.41 ± 0.33</td>
<td>98.35 ± 0.38</td>
<td>98.38 ± 0.45</td>
<td>97.94 ± 0.56</td>
<td>98.41 ± 0.26</td>
<td>97.23** ± 0.50</td>
</tr>
<tr>
<td>Na</td>
<td>97.85 ± 0.29</td>
<td>98.10 ± 0.37</td>
<td>98.06 ± 0.33</td>
<td>97.54 ± 0.45</td>
<td>97.96 ± 0.46</td>
<td>95.72*** ± 0.73</td>
</tr>
<tr>
<td>K</td>
<td>42.53 ± 1.82</td>
<td>44.55 ± 2.15</td>
<td>47.97 ± 2.40</td>
<td>41.18 ± 4.05</td>
<td>44.37 ± 3.34</td>
<td>37.11* ± 3.85</td>
</tr>
</tbody>
</table>

Values represent means±S.E. of 7 animals. \(\text{CCRE} = \text{creatinine clearance} \), \(\text{CPAH} = \text{P-aminohippuric acid clearance} \), \(\text{FF} = \text{filtration fraction} \). *P<0.05, **P<0.01, ***P<0.001, when compared with the before value (paired t-test).
Table 2. Effects of benidipine on tubular reabsorptive function in anesthetized SHR

<table>
<thead>
<tr>
<th></th>
<th>Vehicle before</th>
<th>Vehicle after</th>
<th>Benidipine before</th>
<th>Benidipine after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine volume (ml/kg/hr)</td>
<td>5.49±0.23</td>
<td>4.89±0.42</td>
<td>5.13±1.28</td>
<td>8.84±1.81*</td>
</tr>
<tr>
<td>Na excretion (mEq/kg/hr)</td>
<td>1216±45</td>
<td>1026±57*</td>
<td>1087±259</td>
<td>1788±390*</td>
</tr>
<tr>
<td>K excretion (mEq/kg/hr)</td>
<td>420±25</td>
<td>381±24*</td>
<td>390±58</td>
<td>459±65</td>
</tr>
<tr>
<td>CCRE (ml/kg/hr)</td>
<td>245±9</td>
<td>239±10</td>
<td>235±24</td>
<td>243±21</td>
</tr>
<tr>
<td>C_Li (ml/kg/hr)</td>
<td>142±10</td>
<td>138±11</td>
<td>133±16</td>
<td>172±21*</td>
</tr>
</tbody>
</table>

Values represent means±S.E. of 5 animals. CCRE=creatinine clearance, C_Li=lithium clearance. *P<0.05, when compared with the before value (paired t-test).

DISCUSSION

In the present study, benidipine significantly increased urine volume and Na excretion with no increase in CCRE in anesthetized SHR (Table 1). These observations indicate that benidipine produces diuresis and natriuresis by inhibition of the reabsorption of water and Na at the tubular site rather than by the increase of GFR. On the other hand, it has been reported that nifedipine (14), felodipine (14), amlodipine (7), and nisoldipine (15) increase GFR in anesthetized SHR. Yokoyama et al. reported that NZ-105, a new calcium antagonist, did not increase GFR at doses that produced diuresis and natriuresis in anesthetized SHR (9). The different effects on GFR among calcium antagonists suggest a difference of vasodilating action in the selectivity for the afferent and the efferent arterioles among each drug. The precise mechanism involved, however, awaits further investigations.

Thomsen (16) has developed the technique of C_Li, and has validated the concept that under most normal conditions, filtered Li ions at the glomeruli are reabsorbed at the proximal tubule in the same manner as water and Na ions. Consequently, the reabsorption of water and Na at the proximal tubule can be determined, independent from that in the latter nephron segments, by measuring C_Li. In the present study, benidipine, at a dose that exhibited diuresis and natriuresis, significantly increased C_Li (Table 2), suggesting that benidipine inhibits the reabsorption of water and Na at the proximal tubule. On the other hand, benidipine (3 µg/kg, i.v.) significantly decreased [U/P]CRE and increased [U/P]Na/[U/P]CRE when compared with the vehicle-treated values (Fig. 1). These results indicate that benidipine inhibits the reabsorption of water and Na at the distal nephron. The results from the C_Li study and the stop-flow experiment suggest that benidipine produces diuretic and natriuretic effects by inhibiting the reabsorption of water and Na not only at the proximal tubule but also at the distal nephron.

Elevation of intraglomerular pressure precedes and predicts the development of renal disease (17). Intraglomerular hypertension and hyperfiltration have been recognized as important accelerating factors of glomerular injury (18–20). If elevated pressure causes injury, then antihypertensive therapy might lessen the kidney damage by causing systemic and intraglomerular pressure to decline. However, even if systemic blood pressure is decreased by antihypertensive therapy, intraglomerular pressure does not always decrease (21). In fact, hydralazine increases intraglomerular pressure and accelerates glomerulosclerosis in Dahl salt-sensitive rats (22) and SHR (23).

On the other hand, angiotensin converting enzyme inhibitors (ACEI) ameliorate glomerular injury in a variety of
experimental renal diseases, due to a reduction in intraglomerular pressure (24–26). In contrast to ACEI, treatment with calcium antagonists in the renal disease state was originally thought to have adverse effects by preferentially dilating the afferent arteriole and increasing intraglomerular pressure in the reduced number of functioning nephrons (27). In fact, Brunner et al. reported that long-term administration of verapamil worsened glomerular injury in rats with reduced renal mass (28). Wenzel et al. also reported that nifedipine worsened glomerular injury in rats with renovascular hypertension (29).

Nifedipine (14), felodipine (14), amlodipine (7) and nisoldipine (15) cause dilation more selectively for the glomerular afferent arteriole than the efferent arteriole, as they increase GFR as well as RBF (RPF) in anesthetized SHR. Additionally, Fleming et al. (30), by using video microscopic techniques, found that nifedipine preferentially dilates the afferent arteriole in the hydronephrotic rat kidney. Thus, it seems that most of the calcium antagonists selectively dilate the afferent arteriole rather than the efferent arteriole.

In the present study, benidipine at 1–10 µg/kg (i.v.) did not increase CCRE (Table 1). On the other hand, benidipine at doses of 3 and 10 µg/kg (i.v.) significantly reduces blood pressure by 10 and 30%, respectively, in anesthetized SHR (Koyanagawa et al., unpublished observation). The reason why benidipine did not increase CCRE may be due to the increase in renal sympathetic nerve activity and the reduction of renal perfusion pressure, resulting from the hypotension induced by benidipine. However, the precise mechanism involved in the inability of benidipine to increase CCRE awaits further investigation. In the present study, benidipine significantly increase CPAP at doses that did not increase GFR, resulting in a significant decrease in FF (Table 1). This observation suggests that benidipine, in contrast to most of the other calcium antagonists, can dilate not only the afferent arteriole but also the efferent arteriole. Therefore, it is expected that benidipine will not produce intraglomerular hypertension and hyperfiltration in patients with renal diseases. In fact, the previous study demonstrated that benidipine inhibits the development of focal segmental glomerular sclerosis in rats induced by puromycin aminonucleoside (31).

In summary, intravenous administration of benidipine produced diuretic and natriuretic effects in anesthetized SHR. The results from the CGL study and the stop-flow experiment demonstrate that benidipine produces diuresis and natriuresis by inhibiting the reabsorption of water and Na at both the proximal tubule and the distal nephron. Benidipine increased CPAP without any change in CCRE, resulting in the decrease in FF. This result suggests that benidipine dilates not only the afferent arteriole but also the efferent arteriole. Thus, benidipine may not accelerate glomerular injury when used to treat patients with renal diseases.

Acknowledgments
We are grateful to Drs. K. Kubo, H. Obase and T. Hirata of Kyowa Hakko Kogyo, Co., Ltd. for encouragement and support.

REFERENCES

15. Giebish G, Guckian VA, Krein-Robbenhaar G and Klein-Robbenhaar MT: Renal clearance and micropuncture studies of

23 Azar S, Keane WF and Raij L: Antihypertensive therapy (RX) in nephritic (GN) spontaneously hypertensive rats (SHR):

