Residence Time of Polaprezinc (Zinc l-Carnosine Complex) in the Rat Stomach and Adhesiveness to Ulcerous Sites

Shigeru Furuta, Seiji Toyama, Masahiro Miwa, Takeshi Itabashi, Hiroshi Sano and Tomoyuki Yoneta

Central Research Laboratories, Zeria Pharmaceutical Co., Ltd., 2512-1 Oshikiri, Konan-machi, Osato-gun, Saitama 360-01, Japan

Received August 22, 1994 Accepted December 22, 1994

ABSTRACT—Polaprezinc, an insoluble zinc complex of L-carnosine, exhibits anti-ulcer effects by acting directly on mucosal lesions. The disposition of polaprezinc in the stomach was studied to clarify the usefulness of its structure as an insoluble complex. The time courses of \^{14}C\)-radioactivity in the gastric contents and gastric tissues were parallel to those of \^{65}Zn\) after oral administration of a mixture of \^{14}C\)-polaprezinc and \^{65}Zn\)-polaprezinc (\(^{14}C\), \^{65}Zn\)-polaprezinc) to rats. The gastric contents of \(^{14}C\)-polaprezinc and \(^{65}Zn\)-polaprezinc were greater than those of \(^{14}C\)-l-carnosine and \(^{65}Zn\)SO\(_4\). Mean residence times (MRT) of \(^{14}C\)-polaprezinc and \(^{65}Zn\)-polaprezinc in the stomach were almost the same (ca. 2 hr), and they were double those of \(^{14}C\)-l-carnosine and \(^{65}Zn\)SO\(_4\). In gastric tissues, the area under the concentration curves (AUC\(_{0-8hr}\) of \(^{14}C\)-polaprezinc and \(^{65}Zn\)-polaprezinc were 1.7 times greater than those of \(^{14}C\)-l-carnosine and \(^{65}Zn\)SO\(_4\), respectively. After administration of \(^{14}C\), \(^{65}Zn\)-polaprezinc to rats with acetic acid-induced ulcers, \(^{14}C\) and \(^{65}Zn\)-radioactivities in the ulcerous sites were very similar and greater than those of \(^{14}C\)-, \(^{65}Zn\)-polaprezinc dissolved in acid. In conclusion, polaprezinc is retained in the stomach longer and adheres to the ulcerous sites more than zinc or l-carnosine. The characteristics of this compound may arise from its insolubility and contribute to its strong pharmacological action.

Keywords: Polaprezinc (zinc l-carnosine complex), Mean residence time (MRT), Ulcer, Adhesiveness

Polaprezinc is a zinc complex of carnosine (\(\beta\)-alanyl-L-histidine) (1) that exhibits marked anti-ulcer activity against various experimental models of gastric lesions and duodenal ulcers by acting directly on the gastric mucosa (2–4). In the pharmacological actions of the components of polaprezinc, zinc has membrane-stabilizing activity (5, 6), anti-oxidative activity (7) and can promote wound-healing (8); and on the other hand, l-carnosine has healing-promoting (9) and immunoregulatory actions (10).

Yoneta et al. (11) reported that the efficacy of polaprezinc was more potent than those of l-carnosine, zinc and mixtures of both these agents on indomethacin induced gastric lesions and acetic acid induced gastric ulcers. Furthermore, the pharmacological duration of polaprezinc was longer than that of the mixture (11). It was caused by an increment in its adhesiveness to ulcerous sites, because of its insoluble complex structure (12, 13).

In the present study, the disposition of polaprezinc in the stomach was compared with its component compounds l-carnosine and zinc sulfate to clarify the usefulness of this structure as an insoluble complex. In addition, the adhesiveness of polaprezinc to ulcerous sites in rats with acetic acid-induced ulcers were studied.

MATERIALS AND METHODS

Chemicals

Unlabeled polaprezinc and l-carnosine were synthesized by Hamari Chemicals (Osaka). [U\(^{14}C\)-Histidine]polaprezinc (\(^{14}C\)-polaprezinc) and \(^{65}Zn\)-polaprezinc were synthesized by Nemoto Tokushu Kagaku (Tokyo) and Amersham International plc. (Buckinghamshire, UK), as shown in Fig. 1. \(^{14}C\)-Polaprezinc had specific radioactivities of 92.5 and 162 kBq/mg and a radiochemical purity of 96.6%; \(^{65}Zn\)-polaprezinc had specific radioactivities of 0.458, 1.865 and 2.105 MBq/mg. [U\(^{14}C\)-Histidine]-l-carnosine (\(^{14}C\)-l-carnosine) was synthesized by Nemoto Tokushu Kagaku, and had a specific radioactivity of 808.6 kBq/mg and a radiochemical purity of 96.7%. \(^{65}Zn\)SO\(_4\) (Zn-labeled zinc sulfate) was purchased from NEN Research Products (Boston, MA, USA), and had a specific radioactivity of 20.2 GBq/mg.
Animals

Male SPF rats of the Sprague-Dawley strain (7–8 weeks of age, body weight: approximately 250 g) were used. Rats were purchased from Charles River Japan (Hino) and were acclimatized to our facilities for 1 week before use. Rats with acetic acid-induced ulcers were prepared according to the method described by Okabe and Pfeiffer (14). The animals were given water and solid laboratory food ad libitum. Food (Charles River CRF-1) was purchased from Oriental Yeast (Tokyo), and the zinc content was 52 µg/g of diet.

The animals were housed in an animal room maintained at 23 ± 2°C and 55 ± 10% relative humidity.

Method of administration

A mixture of 14C-polaprezinc and 65Zn-polaprezinc (14C-, 65Zn-polaprezinc), and 14C-L-carnosine and 65ZnSO4 were administered orally to normal rats at doses of 171.6 µmol/5 ml/kg (calculated as 50 mg/kg of polaprezinc). 14C-Polaprezinc and 65Zn-polaprezinc were mixed and suspended in 0.5% sodium carboxymethyl cellulose (CMC-Na) solution with an agate mortar, and then the specific radioactivity was adjusted by addition of non-radioactive polaprezinc; the radioactivity administered was approximately 4.5 MBq/5 ml/kg for 14C-polaprezinc and approximately 6.3 MBq/5 ml/kg for 65Zn-polaprezinc. 14C-L-Carnosine or 65ZnSO4 was dissolved in 0.5% CMC-Na, and the radioactivity administered was approximately 4.5 MBq/5 ml/kg for 14C-L-carnosine or 6.3 MBq/5 ml/kg of 65ZnSO4. Non-labeled polaprezinc was suspended in 0.5% CMC-Na at a dose of 20 mg/5 ml/kg.

For rats with acetic acid-induced ulcers, 14C-, 65Zn-polaprezinc was suspended in distilled water with an agate mortar. 14C-Polaprezinc and 65Zn-polaprezinc were dissolved in a small amount of 0.1 N HCl and added into distilled water (14C-, 65Zn-polaprezinc dissolved in acid).

14C-, 65Zn-Polaprezinc and 14C-, 65Zn-polaprezinc dissolved in acid were administered orally to rats with acetic acid-induced ulcers at doses of 10.3 µmol/5 ml/kg (calculated as 3 mg/kg of polaprezinc). Rats were fasted for 16 hr prior to dosing but were allowed free access to water.

Measurement of radioactivity

The 14C-radioactivity in each sample was measured in a liquid scintillation spectrophotometer (TRI CARB Type 4640; Packard, Chicago, IL, USA), and the 65Zn-radioactivity was measured in an auto-gamma counter (Type 5780, Packard). Since the half life of 65Zn is 245 days, the specific radioactivity of 65Zn-polaprezinc or 65ZnSO4 (A) was calculated according to the following equation:

\[A = A_0 \cdot e^{-0.693 \cdot T/t_{1/2}} \]
(Eqn. 1)

\[A_0: \text{The specific radioactivity at } T=0 \]
\[t_{1/2}: \text{Half life of } 65\text{Zn (245 days)} \]
\[T: \text{Time elapsed (days)} \]

The 14C-radioactivity mixed with 65Zn was converted to an absolute count of 14C according to the calibration curve for quenching by the double tracer method as described previously (15).

Effect of polaprezinc on gastric emptying

Normal rats were given phenol red at 1 hr after oral administration of polaprezinc or 0.5% CMC-Na (control). The animals were killed under ether anesthesia at 2 hr after administration of phenol red. The stomach was removed and cut open, and then it was washed with 20 ml of ice cold saline to collect the gastric contents. After centrifugation (1000 rpm, 2 min), 3 ml of the supernatant was added to 0.5 ml of 5 N NaOH, the samples were meas-
asured at 560 nm in a spectrophotometer (U-2000; Hitachi, Tokyo).

Plasma and stomach concentrations and gastric contents of radioactivity

Normal rats were divided into 3 groups and given 14C-, 65Zn-polaprezinc, 14C-L-carnosine or 65ZnSO$_4$ orally. At 0.5, 1, 2, 4 and 8 hr after administration, blood samples were withdrawn using heparinized syringes from the abdominal aorta of rats under ether anesthesia and centrifuged (3000 rpm, 10 min) to separate the plasma.

The animals were subsequently killed, and the stomach was isolated with both ends clipped by clamps. The stomach was cut and washed with cold physiological saline to collect the gastric contents. After the gastric tissue was weighed, 65Zn-radioactivity was determined directly, and the tissue was solubilized in 2 ml of Soluene-350 (Packard) to determine 14C-radioactivity.

Adhesiveness and formation of polaprezinc at ulcerous sites

Rats with acetic acid-induced ulcers were killed under ether anesthesia at 15, 30 and 60 min after oral administration of 14C-, 65Zn-polaprezinc or 14C-, 65Zn-polaprezinc dissolved in acid.

The stomach was removed and cut open, and the ulcerous and non-ulcerous parts were isolated and washed with 20 ml of saline. Subsequently, each part was washed in 20 ml of 0.1 N HCl, and the radioactivities of the HCl solution (acid soluble fraction) were measured.

Data analyses

The gastric emptying (G.E.) of phenol red (PR) was calculated using Eqn. 2:

$$G.E.\% = 100 \times \frac{\text{amount of dose - recovered}}{\text{amount of dose}}$$ \hspace{1cm} \text{(Eqn. 2)}

The area under the concentration curve (AUC) was calculated by the trapezoidal method.

The statistical moments (the mean residence time in the stomach: MRT$_{\text{stomach}}$ and the variance of residence time: VRT) were calculated from the radioactivity in gastric contents (A_g) using Eqns. 3 and 4 (16):

$$\text{MRT}_{\text{stomach}} = \int_0^\infty t \cdot A_g \, dt / \int_0^\infty A_g \, dt$$ \hspace{1cm} \text{(Eqn. 3)}

$$\text{VRT} = \int_0^\infty (t - \text{MRT})^2 \cdot A_g \, dt / \int_0^\infty A_g \, dt$$ \hspace{1cm} \text{(Eqn. 4)}

The values of MRT$_{\text{stomach}}$ of solids and liquids were calculated from the elimination half life reported by Marcus and Lengemann (17) using Eqn. 5 (18):

$$\text{MRT}_{\text{stomach}} = t_{1/2} / \ln 2$$ \hspace{1cm} \text{(Eqn. 5)}

where $t_{1/2}$ is the elimination of half life.

Student's t-test was utilized to determine the significance of differences.

RESULTS

Effect of polaprezinc on gastric emptying

The gastric emptying of phenol red in control rats was 82.40±2.85% (mean±S.D., n=3), and polaprezinc did not inhibit that at a dose of 171.6 pmol/kg (83.14±1.42%).

Radioactivity of gastric contents and tissue

The radioactivities of gastric contents after administration of 14C-, 65Zn-polaprezinc, 14C-L-carnosine and 65ZnSO$_4$ are shown in Fig. 2. The amounts of 65Zn-polaprezinc were slightly higher than those of 14C-polaprezinc in the gastric contents from 0.5 hr to 4 hr after administration of 14C-, 65Zn-polaprezinc, but the difference was not significant. The amount of 14C-polaprezinc was similar to 14C-L-carnosine at 0.5 hr. However, the content of 14C-polaprezinc was 150-250 times higher than that of 14C-L-carnosine at 2 and 4 hr, but were almost comparable at 8 hr after administration. The amount of 65Zn-polaprezinc was the same as that of 65ZnSO$_4$ up to 2 hr. 65Zn-polaprezinc content at 4 hr was about 40 times higher than that of 65ZnSO$_4$, but the two were comparable at 8 hr after administration.

The MRT$_{\text{stomach}}$ after oral administration of 14C-, 65Zn-
polaprezinc, 14C-L-carnosine and 65ZnSO4 were calculated from the radioactivities in gastric contents (Table 1). The MRTstomach Values of 14C-L-carnosine and 65ZnSO4 were about 1 hr, half of those of 14C-polaprezinc and 65Zn-polaprezinc.

Radioactivity in the gastric tissues and the pharmacokinetic parameters are shown in Fig. 3 and Table 2, respectively. 14C- and 65Zn-radioactivities in gastric tissues were very similar up to 4 hr after administration of 14C-, 65Zn-polaprezinc. However, the concentration of 14C-polaprezinc was about 6 times higher than that of 65Zn-polaprezinc at 8 hr after administration. The concentration of 14C-polaprezinc was almost the same as that of 14C-l-carnosine at 0.5 hr. However, 14C-polaprezinc concentrations were about double those of 14C-l-carnosine at 1 and 4 hr, but these concentrations were comparable at 8 hr after administration. The concentrations of 65Zn-polaprezinc were the same as those of 65ZnSO4 up to 2 hr. However, 65Zn-polaprezinc concentration was about 10 times that of 65ZnSO4 at 4 hr, and it was comparable at 8 hr after administration. The AUC0-8 hr values of 14C-polaprezinc and 65Zn-polaprezinc were about 1.7 times higher than those of 14C-l-carnosine and 65ZnSO4, respectively.

Plasma concentration of radioactivity

The time courses of the plasma concentrations of radioactivity after administration of 14C-, 65Zn-polaprezinc, 14C-l-carnosine and 65ZnSO4 to rats at a dose of 171.6 μmol/kg are shown in Fig. 4, and the pharmacokinetic parameters calculated from the plasma concentrations are shown in Table 2. The plasma concentration of 14C-polaprezinc increased with time after administration of 14C-, 65Zn-polaprezinc, reaching 76.04 nmol · eq/ml at 8 hr after administration. On the other hand, the plasma concentration of 65Zn-polaprezinc peaked at 4 hr (Cmax: 24.23 nmol · eq/ml), and it decreased to 5.14 nmol · eq/ml at 8 hr after administration. The plasma concentration of 14C-l-carnosine reached a Cmax of 200.49 nmol · eq/ml at 1 hr, and it decreased to 68.88 nmol · eq/ml at 8 hr after administration. The 65ZnSO4 concentrations peaked at 1 hr (Cmax: 33.46 nmol · eq/ml), and it decreased to 6.57 nmol · eq/ml at 8 hr after administration. The AUC0-8 hr of 14C-l-carnosine was 2.6 times greater than that of 14C-polaprezinc. However, the AUC0-8 hr of 65ZnSO4 was almost equivalent to that of 65Zn-polaprezinc.

Table 1. Mean residence time in stomach contents (MRTstomach) after oral administrations of 14C-, 65Zn-polaprezinc, 14C-l-carnosine and 65ZnSO4 to rats (dose: 171.6 μmol/kg)

<table>
<thead>
<tr>
<th></th>
<th>MRTstomach (hr)</th>
<th>VRT (hr²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14C-polaprezinc</td>
<td>2.07</td>
<td>1.52</td>
</tr>
<tr>
<td>65Zn-polaprezinc</td>
<td>2.28</td>
<td>1.74</td>
</tr>
<tr>
<td>14C-L-carnosine</td>
<td>0.95</td>
<td>4.32</td>
</tr>
<tr>
<td>65ZnSO4</td>
<td>1.17</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Table 2. Pharmacokinetic parameters of 14C-, 65Zn-polaprezinc, 14C-l-carnosine and 65ZnSO4 after oral administration to rats (dose: 171.6 μmol/kg)

<table>
<thead>
<tr>
<th></th>
<th>tmax (hr)</th>
<th>Cmax (nmol · eq/ml)</th>
<th>AUC0-8 hr (nmol · eq · hr/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14C-polaprezinc</td>
<td>0.5</td>
<td>985.52</td>
<td>2826.27</td>
</tr>
<tr>
<td>65Zn-polaprezinc</td>
<td>0.5</td>
<td>1391.94</td>
<td>3681.48</td>
</tr>
<tr>
<td>14C-l-carnosine</td>
<td>0.5</td>
<td>806.02</td>
<td>1614.29</td>
</tr>
<tr>
<td>65ZnSO4</td>
<td>0.5</td>
<td>1175.06</td>
<td>2199.67</td>
</tr>
<tr>
<td>Plasma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14C-polaprezinc</td>
<td>8</td>
<td>76.06</td>
<td>379.55</td>
</tr>
<tr>
<td>65Zn-polaprezinc</td>
<td>4</td>
<td>24.23</td>
<td>121.91</td>
</tr>
<tr>
<td>14C-l-carnosine</td>
<td>1</td>
<td>200.49</td>
<td>988.02</td>
</tr>
<tr>
<td>65ZnSO4</td>
<td>1</td>
<td>33.46</td>
<td>145.21</td>
</tr>
</tbody>
</table>
Adhesiveness and formation of polaprezinc at the ulcerous sites

65Zn-Radioactivities in the acid-soluble fractions of ulcerous and non-ulcerous sites were very similar to 14C-radioactivities at 15 and 30 min after oral administration of 14C-, 65Zn-polaprezinc to the rats with acetic acid-induced ulcers.

14C- and 65Zn-Radioactivities of the ulcerous sites were greater than those of the non-ulcerous sites (Table 3). At 60 min after administration, 14C and 65Zn-radioactivities of ulcerous or non-ulcerous sites were decreased, and 65Zn-radioactivities were greater than 14C-radioactivities. On the other hand, 14C- and 65Zn-radioactivities of ulcerous and non-ulcerous sites after administration of 14C-, 65Zn-polaprezinc dissolved in acid were lower than those of 14C-, 65Zn-polaprezinc; 65Zn-radioactivities were greater than 14C-radioactivities at each time point.

Table 3. Radioactivities of acid-soluble fractions in the stomach after oral administrations of 14C-, 65Zn-polaprezinc or 14C-, 65Zn-polaprezinc dissolved in acid to rats with acetic acid-induced ulcers (dose: 10.3 pmol/kg)

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>65Zn (nmol·eq/g of tissue)</th>
<th>14C (nmol·eq/g of tissue)</th>
<th>ratio 65Zn/14C</th>
<th>65Zn (nmol·eq/g of tissue)</th>
<th>14C (nmol·eq/g of tissue)</th>
<th>ratio 65Zn/14C</th>
</tr>
</thead>
<tbody>
<tr>
<td>14C-, 65Zn-polaprezinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>$39.00 \pm 16.90^+$</td>
<td>$30.38 \pm 12.66^{**}$</td>
<td>1.28</td>
<td>$23.72 \pm 6.34^{++}$</td>
<td>$22.21 \pm 5.66^{**}$</td>
<td>1.07</td>
</tr>
<tr>
<td>30</td>
<td>25.28 ± 16.41</td>
<td>24.69 ± 21.97</td>
<td>1.02</td>
<td>14.62 ± 6.48</td>
<td>13.76 ± 7.69</td>
<td>1.06</td>
</tr>
<tr>
<td>60</td>
<td>$15.97 \pm 9.69^+$</td>
<td>$5.66 \pm 3.62^*$</td>
<td>2.82</td>
<td>8.83 ± 7.10</td>
<td>2.66 ± 1.90</td>
<td>3.32</td>
</tr>
<tr>
<td>14C-, 65Zn-polaprezinc dissolved in acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>19.45 ± 7.14</td>
<td>7.34 ± 2.07</td>
<td>2.65</td>
<td>10.31 ± 5.59</td>
<td>7.28 ± 4.10</td>
<td>1.42</td>
</tr>
<tr>
<td>30</td>
<td>18.79 ± 13.69</td>
<td>6.17 ± 5.14</td>
<td>3.04</td>
<td>6.45 ± 6.52</td>
<td>4.69 ± 4.93</td>
<td>1.38</td>
</tr>
<tr>
<td>60</td>
<td>4.31 ± 2.72</td>
<td>1.52 ± 0.76</td>
<td>2.84</td>
<td>3.48 ± 1.79</td>
<td>1.28 ± 0.97</td>
<td>2.73</td>
</tr>
</tbody>
</table>

Each value represents the mean±S.D. (n=5). $^+P<0.05$, $^{**}P<0.01$: statistically significant compared with 65Zn-radioactivities of 14C-, 65Zn-polaprezinc dissolved in acid. $^+P<0.05$, $^{**}P<0.01$: statistically significant compared with 14C-radioactivities of 14C-, 65Zn-polaprezinc dissolved in acid.
DISCUSSION

Polaprezinc, which exerts anti-ulcer effects by acting directly on the ulcerous site, is a zinc complex of L-carnosine, which is practically insoluble in water and other organic solvents but can be dissolved in acidic solution (1). Polaprezinc markedly protected rat gastric mucosa against ethanol-induced damage without affecting the mucosal prostaglandin E2 level (3). Arakawa et al. (4) reported that polaprezinc was three times more effective on the mucosal damage than zinc sulfate with equivalent amounts of zinc, and L-carnosine did not prevent the damage in a dose equivalent to polaprezinc. Furthermore, polaprezinc, but not the mixture, prevented the gastric lesions induced by absolute ethanol at 4 hr after oral administration (11); the pharmacological effects of polaprezinc were greater than those of its component L-carnosine and zinc sulfate or a mixture of two drugs on indomethacin induced gastric lesions and acetic acid induced gastric ulcers (11). Therefore, the dispositions of polaprezinc in the stomach was compared with its component compounds L-carnosine and zinc sulfate, since the differences of pharmacological activity between polaprezinc and those of the mixtures were observed. In the gastric contents, 14C-polaprezinc contents were greater than those of 14C-carnosine at 1-4 hr, and 65Zn-polaprezinc content was greater than that of 65ZnSO4 at 4 hr after administration. The differences in radioactivities in the gastric contents were considered to be based on the residence time in the stomach of each drug. One of the pharmacokinetic parameters used to evaluate the disposition of drugs in plasma or tissues is the mean residence time (MRT) calculated by the statistical moment method (16, 18, 19). The MRT is a model-independent parameter calculated from the time courses of the concentrations or amounts of drug, and it is useful for describing the absorption or elimination process. Generally, the residence time of solid forms in the stomach is longer than that of liquid forms (20, 21). Marcus and Lengemann (17) reported the elimination half life of solids and liquids in gastric contents using the 91Y compound, and MRTstomach values of the liquid and solid forms calculated from the elimination half life were 0.9 and 1.5 hr, respectively. In this study, the MRTstomach values of 14C-, 65Zn-polaprezinc, as an insoluble complex, were about 2 hr and similar to the solid form data reported by Marcus and Lengemann (17). On the other hand, the MRTstomach of 14C-L-carnosine and 65ZnSO4 in the solution forms were about 1 hr and faster than those of 14C-, 65Zn-polaprezinc. Furthermore, 14C-polaprezinc or 65Zn-polaprezinc concentrations in the stomach were greater than those of 14C-L-carnosine and 65ZnSO4; therefore, polaprezinc was localized more strongly in the gastric tissues than L-carnosine and zinc sulfate. In addition, polaprezinc did not inhibit physiological gastric emptying in rats and mice (22). Thus, it is considered that the increment in pharmacological activity of polaprezinc was caused by its useful structure as an insoluble complex; the residence times in the stomach of L-carnosine and zinc were postponed.

The effects of residence time on drug absorption were reported previously (23, 24). From these reports, we evaluated the absorption properties of 14C-, 65Zn-polaprezinc, 14C-L-carnosine and 65ZnSO4 in rats. After administration of 14C-, 65Zn-polaprezinc, plasma concentrations of 65Zn-radioactivities were different from 14C-radioactivities. This finding indicated that polaprezinc is dissociated to zinc and L-carnosine on administration, and zinc is metabolized along with the metabolic turnover of the endogenous zinc, while L-carnosine is metabolized and utilized in the synthesis of endogenous high molecular weight substances such as proteins (15, 25, 26).

14C-L-carnosine was absorbed better than 14C-polaprezinc, and the absorption of 65ZnSO4 was slightly better than 65Zn-polaprezinc.

Each component of polaprezinc, L-carnosine or zinc, is absorbed after dissociation of polaprezinc in the gastrointestinal tract as a function time (27), and then the absorption rate of polaprezinc is slower than those of L-carnosine or zinc sulfate, because time for dissociation is required in the gastrointestinal tract. It is also well known that the zinc absorption is regulated by homeostatic mechanisms (28-30), and thus, the absorption ratio of 65Zn-polaprezinc is small (about 11% of the dose at 50 mg/kg) (15). Therefore, no clear differences in plasma concentration profiles of 65Zn-polaprezinc and 65ZnSO4 were observed.

From these results, the disposition of polaprezinc in the stomach and plasma were different from those of L-carnosine or zinc sulfate. No extension of the mean resident time of polaprezinc is caused by its pharmacological action; and thus, it was considered that L-carnosine and zinc sulfate were in the fluid form and remained in the stomach for a short time. On the other hand, polaprezinc remains in the stomach for a relatively long time because of its physico-chemical characteristics as an insoluble complex.

In the second experiment, we examined the formation of polaprezinc adhering to the ulcerous sites in rats with acetic acid-induced ulcers. The 14C and 65Zn-radioactivities of ulcerous or non-ulcerous sites were very similar up to 30 min. However, with 14C-, 65Zn-polaprezinc dissolved in acid, 14C and 65Zn-radioactivities of the ulcerous or non-ulcerous sites were different at all observed time points. Polaprezinc is insoluble in saline, but dissociated to zinc and L-carnosine completely in acidic solution. Furthermore, after dissociation, zinc and L-carnosine could
not be chelated again under the neutral or basic condition. Therefore, polaprezinc could exist as complex form at ulcerous sites at least up to 30 min after administration, because the 14C and 65Zn-radioactivities of the acid-soluble fraction after washing with saline were very similar at the early time points. The 14C and 65Zn-radioactivities in the acid-soluble fraction of ulcerous sites were greater than those of the non-ulcerous parts after administration of 14C-, 65Zn-polaprezinc, thus indicating that gastric mucosal adhesiveness of polaprezinc was specifically localized to ulcerous sites. The 14C and 65Zn-radioactivities of the ulcerous or non-ulcerous sites of 14C-, 65Zn-polaprezinc were greater than those of 14C-, 65Zn-polaprezinc dissolved in acid, indicating that the increment in affinity to the gastric tissues of polaprezinc was caused by its complex formation. In these studies, at 4 hr after administration, 14C-, 65Zn-polaprezinc in tissue and content of the stomach were greater than those of 14C-L-carnosine and 65ZnSO$_4$, respectively.

Furthermore, the amounts of zinc in the ulcer part after administration of polaprezinc were almost the same as those of zinc sulfate up to 1 hr; however, the zinc amounts of polaprezinc were greater than those of zinc sulfate at 3 hr after administration (13). Zinc levels that showed protective effects against gastric lesions were over 20 μg/g of tissue (13), and polaprezinc could maintain a high concentration of zinc in the ulcer region for a long time. Histological studies showed that zinc was localized from the covering epithelial cell layer to the gastric lamina propria mucosae in the normal tissue and in the most superficial ulcerous layer and the granulous layer of the ulcerous site (12). As the gastric pH value is about 2 in fasted rats (31), administered polaprezinc would be dissociated to zinc and L-carnosine in the gastrointestinal tract as a function of time. All of the polaprezinc was not dissociated immediately in the stomach, because the amount of acid in the gastric juice is too small to dissolve it. Furthermore, because the adhesion of polaprezinc to gastric tissues was increased by the H$_2$-receptor antagonist cimetidine via inhibition of polaprezinc dissociation (27), the pharmacological activity was increased by cimetidine (32). In conclusion, polaprezinc is retained in the stomach longer and adheres to the ulcerous sites more than zinc or L-carnosine. The characteristics of this compound may arise from its insolubility and contribute to its strong pharmacological action.

REFERENCES

