Characteristic Upregulation of Dopamine D1-Receptor in Rat Striatum after 6-Hydroxydopamine Treatment

Shin-ichi Iwata, Takao Shimizu, Masahiro Nomoto and Takeo Fukuda

Department of Pharmacology, Faculty of Medicine, University of Kagoshima, Kagoshima 890, Japan

Received February 19, 1996 Accepted April 30, 1996

ABSTRACT—We measured the number of D1-receptors (B_{max}) in the striatum whose dopaminergic terminals were destroyed to various degrees by 6-hydroxydopamine (6-OHDA) to clarify the relationship between the degree of denervation and the change in B_{max} for D1-receptor. Rats were sacrificed 28 days after 6-OHDA treatment, and [^3H]SCH23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) binding capacity and monoamine content were measured in striatal homogenate. B_{max} was significantly upregulated when dopamine content was reduced to less than 5% of that in the vehicle-treated striatum. In contrast, it was significantly decreased when dopamine content was 5–25% of that in the vehicle-treated striatum. The D1-receptors showed either upregulation or downregulation depending on the degree of denervation.

Keywords: [^3H]SCH23390, 6-Hydroxydopamine, Upregulation

The cause of Parkinson's disease is thought to be degeneration of dopaminergic neurons in the substantia nigra. Consequently, dopamine content in the striatum is severely reduced in the disease. 6-Hydroxydopamine (6-OHDA) destroys catecholaminergic terminals after uptake into the terminals. Thus, 6-OHDA has been used to make an animal model of Parkinson's disease.

In general, postsynaptic receptors are upregulated in compensation for decreased release of neurotransmitter when nerve terminals controlling the receptors are damaged. It is well-documented that the D2-receptor is upregulated after denervation of dopaminergic terminals by 6-OHDA. On the contrary, there are controversial results about the 6-OHDA-induced alteration in the number of D1-receptors, as to whether it is decreased (1), increased (2, 3) or unchanged (4). Furthermore, using an autoradiographic assay for D1-receptors, researchers also found an inconsistent alteration in the number of D1-receptors (5–9). There are some reports that attempted to attribute this inconsistency to variations in the time periods used after 6-OHDA treatment (6, 8). Fornaretto et al. (8) indicated that upregulation of D1-receptors exhibited a longer lag-time than D2-receptors. However, Marshall et al. (6) observed no upregulation of D1-receptors 2 weeks, 8 weeks or 11 months after 6-OHDA treatment. We believe that the degree of destruction is another important factor in the upregulation of D1-receptors.

Various doses of 6-OHDA were administered into the striatum to destroy dopaminergic terminals to different degrees to determine if there is a relationship between the degree of destruction of D1-receptors and the alteration in their number.

Male 8–9-week-old Wistar rats (Japan SLC Co., Hamamatsu), weighing 240–260 g, were used. The animals were housed with free access to standard food in an air-conditioned room under a constant 12-hr light and dark cycle (lights on at 7:00 a.m.) at a temperature of 22–24°C and 60–70% relative humidity. Rats were anesthetized with 50 mg/kg pentobarbital (Nembutal; Abbott Laboratories, North Chicago, IL, USA), s.c. and ether. 6-OHDA (Sigma Chemical Co., St. Louis, MO, USA) was dissolved in 0.9070 saline with 0.1% ascorbic acid. Various doses of 6-OHDA (2.5–60 μg) were administered into two separate regions of the left striatum using a 10 μl microsyringe (Hamilton Co., Reno, NV, USA) and an infusion pump (Narutome Seisakujo Co., Ltd., Tokyo) at a rate of 1.0 μl/min. The tip of the syringe was inserted vertically using a stereotaxic apparatus (Narishige Scientific Instrument Lab., Tokyo) through a small hole in the skull 3-mm lateral to the bregma and 5-mm-deep as measured from the surface of the skull. The second injection was 2-mm rostral to the first lesion. The syringe remained in place for 2 min following the infusion to minimize the spread of the drug.
through injection tracks. The volume of the 6-OHDA solution was 2 \(\mu l \) per lesion, and the concentration of 6-OHDA solution was 0.625–15 \(\mu g/\mu l \). Vehicle was administered into the right striatum, but otherwise its injection was performed similarly to the 6-OHDA injection.

Rats were decapitated 28 days after the drug infusion. The striatum of each rat was rapidly removed on an ice-cold glass plate and then homogenized by a Polytron (Kinematica Co., Lucerne, Switzerland) at setting 6 for 20 sec in 1 ml of 50 mM Tris/HCl (pH 7.4), 120 mM NaCl and 5 mM KCl (Tris buffer). Part of the homogenate was used for the protein assay and part for the monoamine assay. The rest of the homogenate was centrifuged at 30,000 \(\times g \) for 10 min at 4\(^\circ\)C, and the pellet was used for the binding assays.

\[^{[3]H}SCH23390\] \((R(+)-7\text{-chloro}-8\text{-hydroxy}\text{-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine})\) (specific activity 316.5 GBq/mmol; Du Pont Co., Boston, MA, USA) was employed as a ligand for specific D\(_1\)-receptor binding. Striatal membrane (0.1 mg protein; protein concentration, 0.1 mg/ml) was incubated with various concentrations (0.1–2.0 nM) of \[^{[3]H}SCH23390\] at 37\(^\circ\)C for 15 min. The reaction was initiated by adding the membranes to tubes containing \[^{[3]H}SCH23390\], terminated by the addition of 4 ml ice-cold Tris buffer, and rapidly filtrated through Whatman GF/B glass-fiber filters (Whatman International, Ltd., Maidstone, England). The filters were washed twice with 4 ml ice-cold Tris buffer, dried and radioactivity determined by liquid scintillation counting (LSC-903; Aloka Co., Ltd., Tokyo) at 40% efficiency. Specific \[^{[3]H}SCH23390\] binding was defined as that displaced by coincubation with 30 \(\mu M \) \(R(-)-SKF38393\) HCl (Research Biochemicals, Inc., Natwick, MA, USA).

\[^{[3]H}Spiperone\] (specific activity of 888 GBq/mmol, Du Pont Co.) was used as a specific ligand for D\(_2\)-receptor binding at various concentrations (0.025–0.3 nM) of \[^{[3]H}Spiperone\], and non-specific binding was determined using 1 \(\mu M \) (+)-butaclamol (Research Biochemicals, Inc.). Otherwise, the procedure was the same as that for the \[^{[3]H}SCH23390\] binding assay. A 5-HT\(_2\) receptor blocker, such as ketanserin, was not used in the \[^{[3]H}Spiperone\] binding assay because we already reported that the specific \[^{[3]H}Spiperone\] binding curve is monophasic when the concentration of \[^{[3]H}Spiperone\] is less than 0.5 nM (10).

The striatal homogenate was mixed with 1 ml 0.1 M perchloric acid containing 5 mM ethylenediaminetetraacetic acid (EDTA) and 3,4-dihydroxybenzylamine (DHBA) (Sigma) and stored at -40\(^\circ\)C. Monoamine content was measured by high-performance liquid chro-
matography (HPLC) with an electrochemical detector (ECD) as described previously (10).

Protein concentration in striatal homogenate was determined by the Bradford protein assay using dye reagent purchased from Bio-Rad Laboratories (Hercules, CA, USA). Bovine serum albumin was used as the standard.

There was a significant alteration in the B_{max} for D1-receptors in the striatum whose dopamine content was less than 5% compared with contralateral vehicle-treated striatum (Fig. 1). The B_{max} was decreased by 16–17% when the dopamine content was 5–25% of the control. When the dopamine content was greater than 25% of the control, there was no change in the number of D1-receptors. Dopamine content (mean \pm S.E.) in the vehicle-treated striatum (n = 26) was 129 \pm 5.5 ng/mg protein, and B_{max} (mean \pm S.E.) of the vehicle-treated controls (n = 26) was 1,362 \pm 66 fmol/mg protein. The K_d for $[^3H]$SCH23390 binding (mean \pm S.E.) in 6-OHDA (n = 26)- and vehicle (n = 26)-treated striata were 350 \pm 25 and 360 \pm 31 pM, respectively.

On the other hand, D2-receptors were upregulated when the dopamine content was decreased to approximately 10% of control level (Fig. 2). Dopamine content (mean \pm S.E.) in the vehicle-treated striatum (n = 10) was 139 \pm 5.4 ng/mg protein, and the B_{max} (mean \pm S.E.) for the vehicle-treated striatum was 615 \pm 47 fmol/mg protein (n = 10). The K_d for 6-OHDA (n = 10)- and vehicle (n = 10)-treated striata were 30.8 \pm 2.3 and 30.6 \pm 1.9 pM, respectively.

The $[^3H]$spiperone binding assay showed upregulation of D2-receptors induced by the denervation of dopaminergic terminals. However, the relationship between the degree of denervation in dopaminergic terminals and upregulation of D2-receptors is not simple. The B_{max} of $[^3H]$SCH23390 binding was not increased until dopamine content was reduced by more than 95%. Furthermore, the B_{max} was decreased when the dopamine content was between 5% and 25% of the control level. Previous studies indicated that the D1-receptor was upregulated after denervation by 6-OHDA when more than 97% of the dopaminergic terminals were destroyed (11). Therefore, prominent dopaminergic terminal denervation is required in order for D2-receptors to be upregulated.

As mentioned earlier, time is an important factor in D1-receptor upregulation. Fornaretto et al. (8) showed that D1-receptors were upregulated 16 to 90 days after 6-OHDA treatment, while D2-receptors were already increased after 15 days. We sacrificed rats 28 days after treatment, since this should be enough time to observe D2-receptor upregulation (10). It is possible that upregulated D2-receptors return to the control level after a longer lag-time, e.g., one year as Fornaretto et al. suggested (8). However, we are uncertain if upregulation in moderately denervated striatum (whose dopamine content was 5–25% of the control level) can occur longer than 28 days after 6-OHDA.

The B_{max} for D1-receptors in rats whose dopamine content is less than 5% of the control showed a 42% increase compared with the B_{max} in a group of rats whose dopamine content was 5–15% of the control. However, the B_{max} for 6-OHDA-treated animals is only increased by 19% when expressed as a percentage of the vehicle-treated contralateral striatum. Therefore, if the slight decrease in the B_{max} for D1-receptors due to moderate denervation is neglected, only a small increase in B_{max} would be seen. That may be one reason other investigators reported no significant change in the number of D1-receptors after denervation by 6-OHDA. Recently, Marcotte et al. (12) suggested one possible explanation for why it is difficult to upregulate D1-receptors. They showed an increase in the D1-receptor-linked G-protein, Gs and Golf, with only a small increase in the D2-receptor-linked G-protein, Gi and Go. They attributed difficulty in upregulation of D1-receptors to the increase in G-proteins coupled to D1-receptors.

We observed a decrease in D1-receptors when the degree of denervation was moderate. This result coincides with several studies in which denervation of dopaminergic terminals was insufficient. We are unsure as to the mechanism. A decrease in the production of D1-receptors (9, 13), degeneration of dendrites that bear D1-receptors (14), and an alteration in the distribution pattern of D1-receptors (10) have been suggested. However, existence of D1-receptors on dopaminergic terminals is not possible, since a decrease in D1-receptors was not observed when dopamine content was greater than 25% of the control level.

In conclusion, we observed either a decrease or an increase in D1-receptors after 6-OHDA treatment depending on the dose administered. D1-receptors could be upregulated after 6-OHDA treatment as could D2-receptors. However, dopaminergic terminals must be mostly destroyed for upregulation to occur, and the number of D1-receptors was decreased if the denervation was insufficient.

REFERENCES

7 Graham WC, Crossman AR and Woodruff GN: Autoradiographic studies in animal models of hemi-parkinsonism reveal dopamine D₂ but D₁ receptor supersensitivity. I. 6-OHDA lesions of ascending mesencephalic dopaminergic pathways in the rat. Brain Res 514, 93–102 (1990)

