Antiepileptic Effects of 20-Hydroxyecdysone on Convulsive Seizures in Spontaneously Epileptic Rats

Ryosuke Hanaya1, Masashi Sasa2,*, Kumatoshishi Ishihara2, Tomohide Akimitsu1, Koji Iida1, Taku Amano3, Tadao Serikawa3, Kazunori Arita1 and Kaoru Kurisu1

1Departments of Neurosurgery, Hiroshima University School of Medicine, Hiroshima 734, Japan
2Departments of Pharmacology, Hiroshima University School of Medicine, Hiroshima 734, Japan
3Institute of Laboratory Animals, Faculty of Medicine, Kyoto University, Kyoto 606, Japan

Received March 28, 1997 Accepted June 24, 1997

ABSTRACT—We examined the effect of 20-hydroxyecdysone (20-HE), a neurosteroid found in insects that is involved in their developmental process, on both tonic convulsion and absence-like seizure in spontaneously epileptic rat (SER). When 20-HE was given orally to SER at 25–200 mg/kg, significant decreases of the tonic convulsion were observed with 100 and 200 mg/kg. Pretreatment of the animal with bicuculline (1 mg/kg, i.p.) antagonized the inhibitory effects of 20-HE. However, absence-like seizures were not affected by 20-HE. These findings indicate that 20-HE produces antiepileptic effects on tonic convulsion by acting on the modulatory site of GABAA receptors.

Keywords: Spontaneously epileptic rat (SER), 20-Hydroxyecdysone, Antiepileptic effect

20-Hydroxyecdysone (20-HE) (Fig. 1A) is a neurosteroid found in insects that plays a major role in the developmental process (1). This neurosteroid acts on ecdysone receptors (EcR) of Drosophila (2), and Drosophila EcR has effects on cultured mammalian cells as an ecdysteroid-dependent transcription factor (3). Neurosteroids such as progesterone and its metabolites, including 5α-pregnan-3α-ol-20-one (3α-OH-DHP), have GABAA-receptor agonistic activities and antiepileptic effects (4, 5). However, other neurosteroids including pregnenolone sulfate and dehydroepiandrosterone sulfate show antagonistic activities for GABA (6, 7). We have previously reported that 20-HE potentiates GABAA receptor-mediated currents in cultured cortical neurons of rats (8). Therefore, 20-HE is expected to inhibit the epileptic seizures.

The spontaneously epileptic rat (SER) is a double mutant (zi/zi, tm/tm) obtained originally by mating a heterozygote tremor rat (tm/+), a mutant found in the inbred colony of Kyoto-Wistar rats (9), with homozygote zitter rats found in a Sprague-Dawley colony (10). After 8 weeks of age, the SER spontaneously shows tonic convulsions with low voltage fast waves and absence-like seizures characterized by sudden behavioral changes such as immobility and staring with simultaneous appearance of paroxysms of 5–7 Hz spike-wave complexes in cortical and hippocampal EEG, although mild stimuli such as a hand clap and blow on the face easily induce convulsions (11, 12). This animal is useful for the evaluation of antiepileptics because the antiepileptic profile of antiepileptic drugs for tonic convulsion and absence-like seizures in SER is in line with those of human grand mal and petit mal epilepsy, respectively (12).

Thus, we examined the antiepileptic effects of 20-HE using SER with chronically implanted electrodes for recording cortical and hippocampal EEG.

Sixteen SER of each sex weighing 150–220 g and aged 10–16 weeks of age were used. All animals were kept in cages in a room maintained at 23±2°C and 55±5% humidity. They were provided with standard rat chow (MF; Oriental Yeast, Tokyo) and tap water ad libitum.

Under sodium pentobarbital anesthesia (30 mg/kg, i.p.), a silver-tipped electrode was chronically implanted in the left frontal cortex, and an enamel-coated stainless-steel electrode was stereotaxically placed in the left hippocampus (P, 4.0; L, 2.0; H, 2.0 mm from bregma), according to the coordinates of the brain atlas of Paxinos and Watson (13). A reference electrode was fixed on the frontal cranium. After a 7-day recovery period, each animal was placed in a sound-proof box (40×40×40 cm) with a small window (11×6 cm) to allow behavioral observation. After a 30-min habituation to the circum-

* To whom correspondence should be addressed.
stances, EEG was recorded for 30 min (as control) before administrations of 20-HE, with a pen-tracing polygraph (RM 6200; Nihon Kohden, Tokyo) and stored on personal computers (Macintosh SE 30; Apple Computer, Inc., Cupertino, CA, USA). The post-drug EEG was continuously recorded for 120 min. Changes in EEG during the absence-like seizure consistently correlated with the respective abnormal changes of the behavior, as described previously (11, 12). When 5–7 Hz spike-wave complexes in cortical and hippocampal EEG lasted for more than 1 sec, the animal was considered to show an absence-like seizure. When the time interval between two independent 5–7 Hz spike-wave complexes was less than 1 sec, the two events were regarded as a single seizure. Animals were given blowing stimuli on the back by the researcher every 5 min during the entire recording period to induce arousal and consistent tonic seizures. EEG recordings were always made between 9:00 and 19:00 hr.

20-HE, obtained from plants and kindly provided by Daicel Chemical Ind. (Tokyo), was administered p.o. as a solution containing 100 mg/ml in physiological saline at the doses of 25, 50, 100 and 200 mg/kg. Bicuculline (Sigma Chemical Co., St. Louis, MO, USA), an antagonist of GABA_A receptors, was injected i.p. once at a dose of 1 mg/kg, 15 min before administration of 20-HE. Each animal was administered a single dose of 20-HE on the day of the experiment. When the same animal was exposed to repeated drug conditions, the wash-out period was not less than 1 week. Seizure duration and frequency were measured, and the cumulative duration of seizures at 15-min intervals was calculated. Statistical significance of the differences between pre- and post-administration of 20-HE (100 mg/kg) was determined by repeated analysis of variance (ANOVA). Differences of the total duration of tonic convulsion between saline- and 20-HE-treated groups and those between 20-HE- and bicuculline-treated
groups were examined with one-way ANOVA followed by Dunnett's test and Bonferroni's/Dunn's test, respectively. Significant differences of absence seizures between pre- and post-20-HE treatment were determined by Kruskal-Wallis' test. Prior to those tests, statistical differences of variances were tested by Bartlett's test.

All 16 SER showed tonic convulsion and absence seizures characterized by low voltage fast waves and 5-7 Hz spike-wave-like complexes in EEG, respectively. The mean frequencies of tonic convulsion and absence-like seizures were 2.66±0.10 and 40.28±3.20 times/15 min (mean±S.E.M.), respectively. The duration of each seizure was 23.11±0.75 and 2.54±0.05 sec, respectively. 20-HE at doses up to 200 mg/kg did not affect the background EEG or the behavior of SER. However, time course analyses (repeated measure ANOVA) revealed that 20-HE at 100 mg/kg was effective in inhibiting the tonic convulsion (F=3.490, P=0.0082) (Figs. 1B and 2). In addition, multiple dose analyses (Dunnett's test) also revealed that 20-HE at doses of 100 and 200 mg/kg significantly (P<0.05) reduced cumulative durations and incidence frequencies of the tonic convulsions. The inhibitory effects of 200 mg/kg of 20-HE lasted longer than those of 100 mg/kg, persisting for more than 60 min (Fig. 3A). 20-HE at the doses of 25 and 50 mg/kg did not significantly affect the tonic convulsion in SER. In contrast to the tonic convulsion, the absence-like seizures were not significantly affected by 20-HE at doses of 25-200 mg/kg (Figs. 2 and 3A).

Bicuculline at the dose of 1 mg/kg alone did not affect the behavior, background EEG, or the duration and frequency of the tonic convulsion or absence-like seizures of
When bicuculline at a dose of 1 mg/kg was given to the animals 15 min before the administration of 20-HE at a dose of 100 mg/kg, the tonic convulsion was not inhibited. Antagonizing effects of bicuculline against 20-HE-induced inhibition of the seizures were observed in all 4 tested animals. The mean total duration of the tonic convulsion was significantly reduced by the administration of bicuculline alone, and the combination of bicuculline and 20-HE further reduced the total duration of the seizures.

Fig. 3. The effects of 20-hydroxyecdysone (20-HE; 25, 50, 100 and 200 mg/kg, p.o.) on the epileptic seizures and antagonism by bicuculline (BIC) of 20-HE-induced inhibition of the seizures in SER. A: The effects of 20-HE at doses of 25, 50, 100 and 200 mg/kg on the total duration of tonic convulsion and absence-like seizures. The total duration of the seizures (summarization of duration of each seizure for 15 min) was measured for 15 min before drug administration and 45–60 and 105–120 min after injection of the drug. Each value is a percentage of the values obtained for 15 min before drug administration. Each column and bar represents a mean and S.E.M. (n=4–5), respectively. **P<0.01, as compared with the saline-treated group.

B: Effects of bicuculline (1 mg/kg, i.p., n=4) alone and 20-HE (100 mg/kg, p.o., n=5) alone on tonic convulsion and absence-like seizures, as well as antagonism by BIC against 20-HE-induced inhibition of the seizures. The effect of BIC alone was examined 60–75 min after the injection. BIC was injected 15 min before the administration of 20-HE. The effects of the combination of 20-HE with BIC were examined 45–60 min after administration of 20-HE. Each column and bar represents a mean and S.E.M. (n=4–5), respectively. **P<0.01.
convulsion for 15 min was reduced to $34.25 \pm 15.93\%$ of the previous value with 20-HE (100 mg/kg) and recovered to $101.65 \pm 5.97\%$ with 20-HE (100 mg/kg) in the animals pretreated with bicuculline (1 mg/kg). The multiple group analysis (Bonferroni’s/Dunn’s test) revealed that the antagonizing effect of bicuculline on 20-HE-induced inhibition was significant ($F=9.296, P=0.0012$) (Fig. 3B).

Tonic convulsion in SER was dose-dependently inhibited by 20-HE, and this inhibitory effect was antagonized by bicuculline. Therefore, inhibition of the seizure by 20-HE may be mediated by GABA$_A$ receptors. 20-HE may potentiate the inhibitory action of intrinsic GABA, thereby inhibiting the seizures, which is in line with the previous finding that 20-HE enhanced GABA-induced Cl$^-$ current in primary cultured cortical neurons (8). In such cultured neurons, 20-HE alone did not induce any current. Furthermore, the agonists that act on the modulatory sites of GABA$_A$ receptors such as benzodiazepines and barbiturates were effective in inhibiting the tonic convolution in SER (12, 14).

However, unlike benzodiazepines or barbiturates, 20-HE alone did not produce any behavioral changes such as sedation and sleep, or background EEG. The difference in the actions of 20-HE on the behavior from those of benzodiazepines and barbiturates may be due to the differences in the binding site of 20-HE in GABA$_A$ receptors from the others.

In conclusion, 20-HE shows antiepileptic effects by enhancing the GABA actions in SER.

Acknowledgments

We are grateful to Drs. Y. Yamaguchi and T. Matsumoto, Dicel Chemical Industries, for the gift of 20-hydroxyecdysone.

REFERENCES