Flow Behavior of Mono- and Diester Lubricants

Takashi KYOTANI*, Hiroyuki YOSHITAKE1), and Yasukatsu TAMAI2)

Chemical Research Institute of Non-Aqueous Solutions,
Tohoku University, Katahira 2-1-1, Sendai 980
1) Present address: Kawasaki Steel Co., Kawasaki-cho 1, Chiba 260
2) Present address: Faculty of Engineering, Science University of Tokyo,
Kagurazaka, Shinjuku-ku, Tokyo 162

(Received February 10, 1988)

Several kinds of mono- and diesters were prepared by esterification of the corresponding organic acids with 2-ethylhexanol. Some of the synthesized esters were hydroxy-esters. Pressure and temperature dependences of viscosity were measured to determine the flow activation quantities based on Eyring’s theory. The effects of hydrogen bonding, chain length, and branching in the molecular structure on activation quantities have been investigated and the results were used for discussion of flow behaviors of these esters.

1. Introduction

Much effort has been made to prepare lubricants of high performance, because the conditions under which they are used are becoming increasingly severe by recent developments in mechanical technology. Therefore, it is necessary to be able to design and synthesize lubricants with predictable properties based on molecular structure. It is well known that rheological properties under high pressures are very important for lubricating oils. Thus, we have investigated relationships between these properties and molecular structures of various kinds of lubricating oils by using Eyring’s hole theory for viscous flow.1-3 It has been shown that flow process of lubricating oils is resolvable into independent movements of oil molecular segments. Further, a procedure has been proposed to estimate the flow activation volume from molecular structure.3,4,5

The most popular guiding principle for synthesis of good lubricants is to use compounds containing an ester linkage which is more stable to heat than a hydrocarbon C-C linkage in mineral oils. Ester lubricants are considered for various reasons to be good synthetic lubricants. Dibasic acid esters and neopentyl polyol esters are now being most widely used as synthetic lubricants, especially in the aircraft industry. We have previously reported about flow behavior of neopentyl polyol esters.3

Recently, much attention has been paid to flow behavior of compounds containing OH group because of the increasingly utilization of water based lubricants such as HWBF (high water base fluid). Some researchers have investigated flow properties of polyglycol and water mixtures to correlate these properties with lubricity.6,7 However, no one has yet reported about the effect of OH group on flow behavior of such typical synthetic oils as ester lubricants.

In this work, several kinds of mono- and diesters with or without OH group were synthesized and their viscosities were measured as a function of pressure and of temperature to determine their flow activation quantities based on Eyring’s theory. The effects of hydrogen bonding and molecular structure on their activation quantities were investigated and the results were used for discussion of their flow behaviors.

2. Experimental

2.1 Materials

A list of molecular structure of the ester lubricants used in this study is given in Table 1. All of the fluids are formed by the combination of mono or dibasic organic acids with 2-ethylhexanol. Fluid 6 was obtained from Nippon Oils & Fats Co. Fluids 7, 8, and 9 are commercially available (Tokyo Kasei Kogyo Co.), and the others were prepared by esterification of the corresponding acids with 2-ethylhexanol in the presence of p-toluenesulfonic acid as a catalyst. The products were identified by IR, NMR spectra, and elemental analysis. Gas chromatography analysis
indicated that purity of the synthesized esters except fluid-11 (purity 87%) was greater than 95%.

2.2 Measurements

A rolling-ball viscometer was used to measure viscosity as a function of pressure. Measurements were made at 313.2 K and pressures up to 100 MPa. Changes in density with pressure were measured using a glass piezometer under the same conditions. Details about the measurements have been given in the previous paper.\(^1\) Atmospheric viscosity was measured at 293.2 K, 313.2 K, and 333.2 K.

3. Results

The results of pressure dependence of kinematic viscosity and density of the esters are listed in Tables 2 and 3. Atmospheric kinematic viscosities are listed in Table 4. Introduction of an OH group into the molecular structure significantly increases viscosity. Viscosities of fluids 3 and 4 are about three or four times larger than those of the other monoesters. Furthermore, as observed in fluids 5, 10, and 11, viscosity increases exponentially with the number of OH groups. A similar effect on viscosity increase is also observed by introducing a benzene ring (fluid 9).

According to Eyring's theory of flow process,
flow activation quantities are given by the following relations:

\[
\Delta V^* = RT(\frac{\ln \eta}{P})T \quad (1)
\]

\[
\Delta H^* = R(\frac{\ln \eta}{T-1} + \frac{H^*}{T}) \quad (2)
\]

\[
\Delta S^* = R\ln(N_h/M\eta) + \Delta H^*/T \quad (3)
\]

where \(R\) is the gas constant; \(T\) is the absolute temperature; \(\eta\) is the kinematic viscosity; \(P\) is the pressure; \(N\) is Avogadro’s number; \(h\) is Planck’s constant; \(M\) is the molecular weight; \(\Delta V^*\), \(\Delta H^*\), and \(\Delta S^*\) are the volume, enthalpy, and entropy of activation for viscous flow, respectively. Values of \(\Delta V^*, \Delta H^*, \text{ and } \Delta S^*\) were determined using the same method described in the previous paper.1)

Resulting activation quantities of the esters at 313.2K are given in Table 5. Flow behaviors of mono- and diesters will be discussed in a following section using these flow activation quantities.

4. Discussion

\(\Delta V^*\) is the volume change in the process of activation for viscous flow and is a measure of the size of the hole required for activated jump; therefore, the value of \(\Delta V^*\) is a function of molecular size. As can be seen from Table 5, \(\Delta V^*\) of diesters are larger than those of monoesters due to the difference in their molecular sizes. However, the change in \(\Delta V^*\) with chemical structure cannot be explained merely by molecular size. \(\Delta V^*\) of fluids 5—8 are almost independent of chain length between two ester groups in spite of the increase in their molecular weights. The effect of chain length can be interpreted by assuming a segmental movement for viscous flow, as previously described in detail.1) According to the concept of segmental flow, \(\Delta V^*\) is defined as the average size of the hole volumes required for the segments to move. Therefore, in fluids 5—8, these chains in the molecules behave as if they are flowing in a segmental unit of a certain size, which itself is independent of the size of the chain.

On the other hand, fluid 9 has a rigid benzene ring which cannot be separated into segments during its flow process causing its \(\Delta V^*\) to be larger than \(\Delta V^*\) of fluids 5—8.

Chain branching has an important effect on increasing \(\Delta V^*\), because it decreases the flexibility of a molecular structure. As expected, mono- and diesters having a branched chain in the acid (fluids 2, 4, 10, and 11) have higher \(\Delta V^*\) values than the corresponding esters with no-branching (fluids 1 and 5). However, in the case of fluids 4, 10, and 11, hydrogen bonding by their OH groups may also play an important role in increasing \(\Delta V^*\) as will be described later.

The effect of OH group on \(\Delta H^*\) and \(\Delta S^*\) as well as on viscosity is remarkable. \(\Delta H^*\) and \(\Delta S^*\) of the esters containing OH groups are much larger than those of the other esters except fluid 9. A similar trend was observed in the values of \(\Delta V^*\) to some extent. These findings can be explained as a result of strong intermolecular attraction due to hydrogen bonding. According to Bondi,8),9),10) hydrogen bonding can basically have two different effects on liquid structure. The first effect: if the attractive force is strong and specific enough to form a stable dimer such as that formed by certain carboxylic acids, the dimer can be treated as a compound with a molecular structure of a dimer. For example, viscosities and \(\Delta H^*\) of propionic acid and oleic acid are almost the same as those of propionic anhydride and oleyl oleate, respectively.8),9),10) The other effect: hydrogen bond may not be sufficiently strong to form distinguishable dimers; thus, a weak but continuous chain association is formed throughout the liquid phase instead of stable dimers.

Hydrogen bonding in hydroxy-esters can be investigated by considering the results of their IR spectra. It is a well established fact that hydrogen bonding decreases the C=O stretching frequency. In the present study, esters having no OH group had a strong C=O absorption at 1,740 cm\(^{-1}\) and this frequency remained unchanged even in the presence of OH groups in the ester molecules, implying that there is no hydrogen bond formation between C=O and OH groups in these hydroxy-esters. A broad peak was observed at 3,450—3,500 cm\(^{-1}\) in each of the hydroxyl esters. These absorption bands can be ascribed to the OH stretching band which is shifted to lower frequency by hydrogen bond formation. It is well known that alcohol molecules which undergo self-association by hydrogen bonding do not form stable dimer but produce various kinds of unstable polymeric species.12) This is the reason why the observed peak was broad. Such self-association of alcohols tends to decrease with increasing degree.

Table 5 Flow Activation Volume, Enthalpy, and Entropy at 313.2 K

<table>
<thead>
<tr>
<th>Fluid No.</th>
<th>(\Delta V^*) (10(^{-3}) m(^3)/mol)</th>
<th>(\Delta H^*) (kJ/mol)</th>
<th>(\Delta S^*) (J/k mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.0±4.3×10(^{-2})XP</td>
<td>12.4</td>
<td>-13.7</td>
</tr>
<tr>
<td>2</td>
<td>28.3±4.8×10(^{-2})XP</td>
<td>12.7</td>
<td>-14.3</td>
</tr>
<tr>
<td>3</td>
<td>29.0±5.4×10(^{-2})XP</td>
<td>27.1</td>
<td>22.1</td>
</tr>
<tr>
<td>4</td>
<td>31.3±3.2×10(^{-2})XP</td>
<td>24.8</td>
<td>16.0</td>
</tr>
<tr>
<td>5</td>
<td>36.1±4.0×10(^{-2})XP</td>
<td>24.3</td>
<td>5.4</td>
</tr>
<tr>
<td>6</td>
<td>33.5±3.4×10(^{-2})XP</td>
<td>19.8</td>
<td>-10.5</td>
</tr>
<tr>
<td>7</td>
<td>36.9±7.1×10(^{-2})XP</td>
<td>21.0</td>
<td>-10.1</td>
</tr>
<tr>
<td>8</td>
<td>36.8±6.6×10(^{-2})XP</td>
<td>21.4</td>
<td>-10.0</td>
</tr>
<tr>
<td>9</td>
<td>50.7±7.4×10(^{-2})XP</td>
<td>34.9</td>
<td>26.9</td>
</tr>
<tr>
<td>10</td>
<td>42.1±3.5×10(^{-2})XP</td>
<td>34.7</td>
<td>31.2</td>
</tr>
<tr>
<td>11</td>
<td>51.8±8.8×10(^{-2})XP</td>
<td>48.9</td>
<td>66.7</td>
</tr>
</tbody>
</table>

P: Pressure in MPa

石油学会誌 Sekiyu Gakkaishi, Vol. 31, No. 5, 1988
of steric hindrance in their structures and also with increasing molecular weights. Since the hydroxy-esters in this study are of rather high molecular weights, sterically hindered alcohols, dimers and/or trimers should be predominant species. From above considerations, it is reasonable to imagine that unstable polymers (dimers and/or trimers) are formed through hydrogen bonds of the OH groups in the hydroxy-esters, and these bonds are partially broken whenever one molecule has to jump into a hole. This act of breaking is reflected in the very high values of viscosity and ΔH^\ast. The degree of freedom in these esters may increase at the transition state in flow process because of the cleavage of the hydrogen bonds. This leads to very high values of ΔS^\ast as observed in Table 5.

The effect of OH group on ΔV^\ast is somewhat complex. Fluids 1 and 3, or fluids 2 and 4 have almost the same molecular weight and have a similar molecular geometry, but ΔV^\ast of the hydroxy-ester is larger than that of the corresponding ester having no OH group. If hydrogen bonds were completely broken in the flow process for these esters, the value of ΔV^\ast should be unchanged irrespective of the presence of OH group. Therefore, the difference in ΔV^\ast is considered to be stemming from hydrogen bonding during the flow process. It is suggested that a certain fraction of hydroxy-esters flow as polymeric molecules, that is, without the cleavage of the hydrogen bonds. The proportion of the polymers at the transition state in flow process can be roughly estimated in the case of fluid 3. If only stable dimers present in the liquid state and then flow, the value of ΔV^\ast would have been nearly equal to that of fluid 6 whose molecular weight is twice that of fluid 3; but, in the absence of hydrogen bonding, the ΔV^\ast of fluid 3 might become equal to that of fluid 1. Since the actual flow pattern is believed to be intermediate between these two cases, ΔV^\ast of fluid 3 may be approximately expressed as:

$$\Delta V_{\text{fluid}}^\ast = (1-p)\Delta V_{\text{fluid}}^\ast + p\Delta V_{\text{fluid6}}^\ast$$

where p is the probability of the presence of a dimer in the flow process. By using the data in Table 5, p is calculated to be about 0.3. This means that about 70% of the hydrogen bonds will be broken by shear stress.

Viscosity, ΔH^\ast and ΔS^\ast of fluid 4 are smaller than those of fluid 3. This may be due to the shielding effect of OH group by chain branching in the acid of fluid 4. Such shielding effect is well known also in the case of isomeric alcohols. On the other hand, ΔV^\ast of fluid 4 is slightly larger owing to the effect of chain branching on molecular flexibility.

We have reported that the relation between ΔH^\ast and ΔV^\ast is nearly linear for homologous series of various kinds of lubricating oils. Fig. 1 shows that a similar linear relation holds for esters with or without OH groups. ΔH^\ast is considered to be consisting of two terms: ΔH_h^\ast, the heat of hole formation, and ΔH_i^\ast, the heat of activation for molecular or segmental translation. If the work required to create a hole, ΔH_i^\ast, is proportional to ΔV^\ast, then ΔH^\ast can be expressed as:

$$\Delta H^\ast = \Delta H_h^\ast + \Delta H_i^\ast = A\Delta V^\ast + \Delta H_i^\ast$$

where A is a constant corresponding to internal pressure. The two lines with the same slope in Fig. 1 indicate that the values of A for the two groups of esters are almost the same, and ΔH_i^\ast of the hydroxy-ester group is larger than that of the other. These findings mean that ΔH^\ast increment by OH group introduction is ascribed to the increase in ΔH_i^\ast. Since ΔH_i^\ast is a measure of the energy of a molecule required to past its neighbors to jump into the hole, the hydrogen bond cleavage occurred during the flow process may contribute mainly to the increase in ΔH_i^\ast.

5. Conclusion

ΔV^\ast of diesters are larger than those of monoesters because of the difference in their molecular weights. However, ΔV^\ast of diesters are independent of the chain length between the two
ester groups in spite of molecular weight increase. This is due to the segmental movement of the chain in flow process. The chain branching on molecular geometry increases ΔV^*. Introduction of OH groups into the esters has remarkable effects on increasing viscosity, ΔH^*, and ΔS^*. Polymeric species are formed through hydrogen bonds of the OH groups in the hydroxy-esters, and these bonds are partially broken during the flow process. The cleavage of hydrogen bonds is ascribed to the increases in viscosity, ΔH^*, and ΔS^*. Since some fractions of hydroxy-ester molecules flow without cleavage of their hydrogen bonds, these esters have somewhat larger ΔV^*. A linear relation between ΔH^* and ΔS^* was found in either of the esters with or without OH groups.

References
要 旨
モノエステルおよびジエステル油の流動挙動

京谷 隆，吉武 裕幸(1)，玉井 康勝(2)
(1) 北海道大学水海化学研究所，980 仙台市平 2-1-1
(2) 現在：川崎製鉄(株)，260 千葉市川崎町

モ ENG, 高圧, ドヒドウ, ルエロジー, シンセティックオイル, 黏性

流滑油において、その粘度が重要な性質であること周知の事実である。したがって、流滑油を分子構造するためには、流滑油の分子構造とその粘度との関係を明らかにする必要がある。前報では酸類系流滑油、合成フタフェノイド、ヒンダードエステルの粘度を Eyring の粘性理論を用いて解析し、その分子構造との関係を議論した。本報では代表的エステル系流滑油であるモノエステルおよびジエステル油を用い、粘性流動においてその分子の挙動を考察した。

試料として、一塩基酸および二塩基酸と 2-エチルヘキサノールのエステルを用いた (Table 1)。このうち試料 4, 10, 11 は水酸基のあるエステルである。これらのエステルの高圧粘度を棒落球式粘度計で 313.2 K, 常圧から 100 MPa の圧力範囲で測定した。

さて Eyring の粘性理論より活性化体積 ∆V, 活性化エントロピー ∆S, 活性化エントロピー ∆P の三種類のパラメーターが導出できる (Eqs. 1-3)。その値を Table 5 に示す。 ∆P は分子が粘性流動するときに必要な空孔の大きさを示す量である。ジェステルの ∆P はモノエステルのそれより大きか。これは大きな分子になるほど必要な空孔も大きくなるからである。しかし、試料 5-9 のジェステルではその傾長にもかかわらず ∆P の値はほとんど変化しない。一方、酸の部分の鎮が枝分かれしたモノおよびジェステルは対応する枝分かれのないエステルのそれより大きい。また、フタフェステル (試料 9) の ∆P はかなり大きい。このような挙動は分子が毎流動していると考えると理解できる。つまり、分子の形状が柔軟なものほど ∆P は小さく、枝分かれやベンゼン環などのような剛直な構造を持つものほど ∆P は大きくなる。

IR などの結果から、水酸基のあるエステルでは安定な二量体は形成しないが、水酸基どうしの水素結合により分子は不安定な二量体および三量体を形成していると考えられる。流動時にはこれらの水素結合の切断にエネルギーを要するので、水酸基のあるエスステルの粘度、ΔH' が大きくなる。また、水素結合の切断で分子の持つ自由度が増加するので ∆S' も大きくなる。ΔP' についても水酸基の導入により増加する傾向がみられる。これは先に述べた枝分かれの効果とともに水素結合も大きく関与している。つまり流動過程において、これらのエステル分子のいくらかは水素結合をしたまま、つまり二量体あるいは三量体の状態のままで流動している。そのため、ΔP' は単量体の状態での流動に比べて大きくなる。たとえば、試料 3 が完全な単量体のままで流動しているとすると、その ΔP' は分子量がどうし二倍の試料 6 の ΔP' と等しくなるだろう。また、水素結合が完全に切断され単量体の状態で流動しているとするとき、ΔP' は類似の分子形状を持つ試料 1 とはほぼ同じになるだろう。したがって、流動の移動状態で二量体となっている確率を p とすれば、試料 3 の ΔP' は Eq. 4 で表せる。これより p は約 0.3 と計算でき、このような仮定が正しければ水素結合の約 70% は流動時に切断されることになる。

水酸基のあるエステルの ΔP' および ΔH' およびその他のエスステルの ΔP' および ΔH' それぞれの直線関係にあった (Fig. 1)。ΔH' は空孔生成に必要なエントロピー ΔH's と空孔に移動するのに必要なエネルギー ΔH' ととの和として考えられている。ΔH' が ΔH's に比例することを考えれば、Fig. 1 の二つの直線から水酸基のあるエスステルの ΔH' はその他のエスステルのそれに比べて大きいことが分かる。それらは ΔH' が空孔に移動するさいの水素結合の切断に要するエネルギーを反映しているからである。

Keywords
Flow activation quantity, High pressure, Hydrogen bonding, Rheology, Synthetic lubricant, Viscosity