初心者のための流体力学

関 寛佐子*

1. はじめに

流体力学は、水のような液体および空気のような気体の運動を取り扱う力学である。液体や気体（まとめて流体という）は、微視的に見ると分子、原子からなり、最終的に各種の素粒子といった不連続な構造をもつ。構成要素である分子、原子あるいは素粒子の微視的な運動を求めて、それをもとに流体全体の運動を構築しようとしても、アボガドロ数の近さ10⁻²⁶個程度の粒子運動を求める必要がある。一方、分子、原子レベルに比べてさらに大きな尺度でみると、不連続な構造は見えなくななる物質が連続的であるように見える。このような分子、原子に比べると大きなひとたまりの流体部分を考え、それを“流体粒子”とよんで、その速度や変形などの運動を調べるのが流体力学である。もちろん、流体粒子は微視的には十分小さい必要があり、その流体粒子の密度や速度等は、それらを構成する分子・原子についての平均値を指す。

流体力学の扱う領域は広く、またその歴史は古いので、“流体力学の初期”といっても、紹介すべき内容は沢山ある。本稿は、沢山の重要な事項のうち、1. 基礎方程式であるナビエ－ストークス方程式の導出、2. 地流と乱流について簡単に紹介したい。1. については、流体粒子の運動が古典力学に従うとすると、ニュートンの運動方程式がナビエ－ストークス方程式になることを、簡単な流れについて見てみる。2. については、弁管内の流れについて地流から乱流への遷移について紹介した後、生体内の血液流れはほとんどの場合で層流であることを示す。続いて、層流でも流れの剝離や涡は起こり得ることを紹介する。

2. 流体の運動方程式

個々の流体粒子の運動は、よく知られたニュートンの運動法則：

\[(\text{質量}) \times (\text{加速度}) = (\text{力})\] （1）

に従う。これは質点の運動を支配する運動方程式で、それでも高校で習った記憶がある。物体に力が働くと、それに比例する加速度が生じることを示している。しかしながら、流体力学で出てくる運動方程式：ナビエ－ストークス方程式はこんなに単純ではなくて、もっともっと複雑な形だと思われるかもしれない。なお、ニュートンの運動方程式を流体粒子についてあてはめるとき、非線形偏微分方程式であるナビエ－ストークス方程式になってしまうのである。その理由は、流体は質点と異なり、空間的に連続的に分布しているからである。このため、(1)式に現れる（加速度）と（力）の表しかたが複雑になる。本稿の前半はその辺の事情を簡単に説明してみたい。

2.1 節では流体粒子の（加速度）の表現について、2.2 節では（力）の表現について紹介する。

2.3 節では、2 平行平板間の流れについて、2.1, 2.2 節の結果をもとに運動方程式(1)を書き下し、ポアズィオン流れを導出してみる。2.4 節では、ナビエ－ストークス方程式とそれに現れる無次元パラメータについて紹介して、次章への準備とする。

2.1 流体粒子の加速度

ニュートンの運動方程式(1)を流体粒子について考えたとき、（加速度）の表現がややこしくなるのは、流体力学で用いる“場”の考え方と関係している。空間に固定した座標系を \(x=(x, y, z)\),

*関西大学工学部 〒564-80 大阪府吹田市山手町 3 - 3 - 35

-22-
時間tとすると、ある時刻tにおける流体の運動状態は、各場所xでの力、速度、加速度などの力学変数で表されるが「場」の考え方がある。一方、(1)式は粒子の運動を記述するものであるが、時刻tに場所xにいた流体粒子は次の瞬間には違う場所に移動している。従って、(1)式の加速度は、単にその場所での速度の時間変化率∂u/∂t（偏微分∂u/∂tというのは場所xを一定に保って時間tだけ変化させたときの変化率を表す）だけではなく、着目している流体粒子が移動したことによる効果も付加加える必要がある。

流体粒子の運動によって生じる加速度を評価してみよう。簡単のため、まず流体粒子はx軸に沿って運動しているしよう。いま、着目している流体粒子のある場所、ある瞬間での速度をuとすると、微小時間Δt後にはその流体粒子はuΔtだけ移動している。そこででの流速と元の場所での流速の差は、uのx方向の変化の割合∂u/∂xに距離uΔtを掛けて量u∂u/∂xΔtで与えられる。従って、これをΔtで割って単位時間当たりにすると、流体粒子の運動によって生じる速度変化の割合は、u∂u/∂xとなる。

従って、流体粒子の加速度は、その場所での速度の時間変化率と移動による速度の変化率を加え合わせることによって

\[\text{加速度} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \]

となる。一般に、流体粒子が3次元空間で運動する場合には、u=(u, v, w)として、y, z方向の速度変化も加えることにより

\[\text{加速度} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \]

となる。

\[\text{加速度} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \]

が得られる。従って、(1)式は書き表すことができる。ここで、×内積を表し、∇は勾配を表す。\[\text{加速度} = \frac{\partial u}{\partial t} + (u \cdot \nabla) u \]

と書き表すこともできる。ここで、\(\cdot \)は内積を表す。

\[\text{加速度} = \frac{\partial u}{\partial t} + (u \cdot \nabla) u \]

である。\(\text{加速度} = \frac{\partial u}{\partial t} + (u \cdot \nabla) u \)

と書き表すこともできる。ここで、\(\cdot \)は内積を表す。

ある場所での時間変化率∂u/∂tと、流体粒子に付随した時間変化率の変化をはっきり表するために、後者はD/ Dtと表現することもある。

\[\text{加速度} = \frac{\partial u}{\partial t} + (u \cdot \nabla) u \]

で与えられる。従って、(2)式は

\[\nabla = \frac{\partial u}{\partial x} + (u \cdot \nabla) u \]

となる。この表現は速度の変化だけではなく、温度や圧力など物理量一般に適用できる。

時間的に変化のない定常流では、∂u/∂t=0であるが、(u \cdot \nabla) u がゼロでなければ流体粒子の加速度はある。例えば、Fig. 1 (a)のように、断面の径が下流に行くにつれて減少するような管内の流れを考えよう。各断面の流量は保存しなければならないので、流速は下流に行くと増加することは容易に納得できる。従って、たとえ流れが定常であっても、流体粒子は次第に加速していることになる。
なる。別の例は、Fig. 1(b)に示すような流れの方向が変わる場合である。流れが定常であっても、流体粒子は最初下向きから最終的に右向きまで運動の方向を変えるから、加速度をもつ。このように(2)式の右辺第2項は、流体粒子の移動する方向に流速（速さおよび向き）が変化する場合に生じる。そして、その変化が大きいほど、また速度自体が大きいほど、この項は大きくなる。
(2)式の右辺第2項にはuが2回現れており、非線形項と呼ばれる。一般に非線形の方程式を解くのは難しいので、この項の存在は流体解析を困難にする大きな要因となっている。
さて、流体粒子の移動する方向に流速が変化する場合には、(2)式の非線形項が生じることを前提で見た。逆にどのような場合にこの項が0になるのであろうか。最も簡単な例は、流れがいたるところ同一方向を向いている場合である。厳密には、水のように密度が運動に伴って変化しない流体（非圧縮性流体）が一方的に流れている場合には、この非線形項が0になる。ここで、非圧縮性というのは、液体の場合はもちろんのこと、空気の様な気体の場合でも流速が速くに変えて小さい場合にはよく成り立つことを一言付加しておく。
今、非圧縮性流体の一方向の流れを考え、(2)式の非線形項が0になることをみつめよう。流れの方向にx軸をとると、流速は\(u=(u, 0, 0) \)で表される。
速度\(u \)は流れ方向には変化しないことはすぐに分る。もし変化するなら、それと垂直なy軸方向あるいはz軸方向にも流れが生じなければ非圧縮性流体の質量の保存則が成り立たないからである。
つまり,
\[
\frac{\partial u}{\partial x} = 0 \tag{3}
\]
が成り立つ。従って、一方向流れである限り、\(u \)はxには依らず、\(y, z, t \)だけの関数\(u(y, z, t) \)となる。
従って、加速度\(\frac{Du}{Dt} \)は\(x \)成分のみあって、それは(2)式より
\[
\frac{Du}{Dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = \frac{\partial u}{\partial t} \tag{4}
\]
のように非線形項が0になる。流れが一方向しかない場合には、加速度の表象が非常に簡単になり、それに伴って解析が著しく容易になる。
2.2 流体粒子の運動方程式
次に、(1)式の(力)について考えよう。ニュートンの運動方程式(1)の右辺は粒子に働く力である。
例えば、一個の物体が重力の作用で落下しているときは、(1)式の右辺は重力となる。空気中を落下している物体には実際は周囲の空気から抵抗が働いているので、これも付け加えて、(1)式の右辺
\[= (重力) + (空気抵抗) \]
となる。また、浮力も無視できない場合にはこの項も付け加える必要がある。
さて、物質が静止している場合には空気軽荷が働かないことを考えると、空气抵抗は、物体と周囲の空気との速度差によって生じる、物体表面を通じて作用することが分かる。また、同一の物質が同じ速さでいろいろな媒質中に動くときを考えると、空気中と水中、あるいは油の中では周辺の媒質から受ける抵抗も異なっていることは容易に想像されるよう。つまり、抵抗はまわりの媒質の物性にも依存している。
ここでの、通常の物質の運動の代わりに流体粒子の同様の運動を考えてみよう。流体粒子は普通の物体と同様、重力が働いているが、周りの流体が今着目している流体粒子と同一の流体であるとすれば重力は浮力と相殺してしまう。従って、電磁気力などの他の力が働いていないとすれば、流体粒子に働いている力は周りの流体から受ける“抵抗”のみということになる。この“抵抗”は先程見たように、着目している流体粒子の表面に周りの流体から作用する力の合力である。
流体粒子の表面を通して働く力を表面力という。
次節で、流体中で作用する表面力について考え、(1)式を流体粒子に適用した場合の右辺の(力)について評価してみよう。
2.2.1 ニュートン流体
一般に、流体内に任意の面を仮想的に考え、流体がその面に単位面積当たりに及ぼす力応力といいう。今、Fig.2のような、一定な速度勾配をもつ流れがあったとき、その中の面Sに上側の流体が
Fig. 2 一様な速度勾配 \(\frac{du}{dy} \) をもつ流れがあったとき，仮想的に考えた面S上の流体が及ぼす応力は，圧力pとせん断応力 \(\tau = \mu \frac{du}{dy} \) である。ここで，\(\mu \) は流体の粘性率である。

及び，面Sの上側の流体は下側の流体より遠く右向きに進んでいるので面Sを右向き（x 軸正方向）に引張る向きに力を及ぼすと考えられる。その応力の大きさは，上の議論と同様に速度勾配に依存していることが予想されるが，その依存の仕方は流体の性質による。例えば水の場合，面Sに働く応力は速度勾配に比例する。つまり，面Sに作用する（x 方向の）応力 \(\tau \) は，定数 \(\mu \) を用いて

\[
\tau = \mu \frac{du}{dy}
\]

と表すことができる。⑤式がなりたつような流体をニュートン流体といい，その比例係数 \(\mu \) を粘性率とよぶ。ニュートン流体は，基本的であるとともに日常でもよく見られ，最もよく調べられている流体である。

粘性率 \(\mu \) は水やエタノールなどのニュートン流体の場合には物質によって決まった値をもつ物性値である。一方，ニュートン流体ではない流体に対しても，⑤式を用いて応力と速度勾配の比の値として粘性率を定義することが可能である。しかしながらこの場合には，粘性率は物性値にならない。例えば，血液の場合に⑤式で定義される粘性率は，ヘモグロビンや血球・血漿の物性とともに，速度勾配の値によっても変化する。

さて，上で見た応力 \(\tau \) は面Sに対して面と平行にこするように働き，せん断応力と呼ばれる。この他に面と垂直な方向に働く応力成分もあり，それは垂直応力と呼ばれる。Fig. 2 の流れの場合，垂直応力は圧力のみである。

2.2.2 円形粒子に働く力

以上流体中で働く応力について見てきたが，このことを用いて，(1)式の右辺，即ち流体粒子に働く力を評価してみよう。生体内流れに係わった流れのうち最も簡単である，平行平板間の非圧縮性流体の流れについて考えよう。具体的には，Fig. 3 のような無限に近い 2 平行平板間の領域に左右の圧力差によって右向きに流れが生じている場合について，図中の流体粒子に働く力を求める。

Fig. 3 非静止している 2 平行平板の間に，圧力差によって左から右に非圧縮性流体が流れている場合を考えよう。辺の長さが \(\Delta x, \Delta y, \Delta z \) で，中心が \((x_0, y_0, z_0)\) にある直方体の流体粒子について，各面に働く力を評価し，この流体粒子の運動方程式をたてよう。

Fig. 3 のように座標をとると，流れは x 軸方向を向いており，xy 面に平行な 2 次元的な（つまり z に依存しない）流れと考えられる。従って，速度ベクトルは \(\mathbf{u} = (u, 0, 0) \) と表される。2.1 節の議論から（3）式が成り立ち，\(u \) は \(y, t \) だけの関数になる。まず簡単のため，流れは時間的に変化しないものと仮定すると，\(u \) は \(t \) にも依存しなくなり，\(y \) のみの関数となる。即ち，\(u = (u(y), 0, 0) \) である。

Fig. 3 に示した，辺の長さが \(\Delta x, \Delta y, \Delta z \) で，中心が \((x_0, y_0, z_0)\) にある直方体の流体粒子について，直方体の各面に作用する面積力を考える。直方体の各面に働く応力は（5）式で与えられるせん断応力と圧力である。流れは z 方向にはなく，しかもこの方向に \(u \) は一様であるから，z 軸と垂直な面に働く力はつりあっている。従って，この面
に働く応力については考えが必要である。そこでy軸に垂直な直方体の面S_y、S_Tおよびx軸に垂直な面S_E、S_Bに作用する応力について考えよう。

直方体の上側にある流体が面S_Lに及ぼす応力は、(5)式から$\mu d\rho dy|_{y=y_0+\Delta y/2}$と表される。以下は$y=y_0+\Delta y/2$における値とすることを表している。面$S_L$に働く力はこの応力に面積$\Delta x\Delta z$を掛けて、$\mu d\rho dy|_{y=y_0+\Delta y/2}\Delta x\Delta z$と表される。一方、直方体の下側にある流体が面$S_T$に及ぼす応力は、面$S_T$の上側の流体の面が面$S_T$に及ぼす応力$\mu d\rho dy|_{y=y_0-\Delta y/2}$の反作用であるから、これと向きが逆で（つまり、負号をつけ）$-\mu d\rho dy|_{y=y_0+\Delta y/2}$とされる。よって、この面に作用する力は$-\mu d\rho dy|_{y=y_0+\Delta y/2}\Delta x\Delta z$である。

垂直応力については、圧力pがx軸方向にのみ変化していることから、面S_LとS_Tについては大きさが等しく向きが反対でその合力は0となる。面S_Eでは左向きで、$-p |_{x=x_0+\Delta x/2}$となるが、面S_Bでは右向きで$p |_{x=x_0-\Delta x/2}$となる。力に直すには、この圧力に面S_E、S_Bの面積$\Delta y\Delta z$を掛ければよい。

以上のことから、この直方体に働く力の合力は各面に作用する力の和をとって、x軸方向には

$$\mu \left(\frac{du}{dy} |_{y=y_0+\Delta y/2} - \frac{du}{dy} |_{y=y_0-\Delta y/2} \right) \Delta x\Delta z$$

$$-\rho \frac{d\rho}{dt} \Delta x\Delta y\Delta z$$

と評価される。y軸、z軸方向には0となる。

(6)式の最後の2行の係数は直方体の中心(x_0, y_0, z_0)でのそれそれぞれの値である。この式より、Fig. 3に示された流体粒子には、右向きに(6)式で与えられる力が働いていることになる。

この節で流れは定常であると仮定したが、例えば下流側の圧力差が時間的に変動するときの流れに時間変化がある場合には、全く同様の議論ができる。ただ、定常流の場合にはuがyのみの関数であり、pがxののみの関数であったのに対し、定常の場合には両方ともtに依存するようになる。従って、(6)式で、uもpも2変数の関数であるから、常微分が偏微分になって、流体粒子に働く力のx成分は

$$\left(\frac{\partial u}{\partial y} - \frac{\partial p}{\partial x} \right) \Delta x\Delta y\Delta z$$

(7)と書き換える必要がある。(7)式を用いると、一方の流れが時間的に変化するように対応することができる。

2.2.3 運動方程式

前節で、(7)式に示す直方体の流体粒子に作用する力が分かっただ。これで、この流体粒子の運動方程式を書き下すことができる。

直方体の体積は$\Delta x\Delta y\Delta z$であるから、その質量は密度ρを用いて$\rho\Delta x\Delta y\Delta z$である。従って、ニュートンの運動方程式(1)の左辺はx成分のみあって、それは(4)式より

$$\rho \frac{Du}{dt} \Delta x\Delta y\Delta z = \rho \frac{d\rho}{dt} \Delta x\Delta y\Delta z$$

となる。(1)式の右辺は(7)式で与えられるから、流体粒子の運動方程式（のx成分）は

$$\rho \frac{d^2 u}{dx^2} \Delta x\Delta y\Delta z = \left(\frac{\partial u}{\partial y} - \frac{\partial p}{\partial x} \right) \Delta x\Delta y\Delta z$$

つまり、

$$\rho \frac{d^2 u}{dx^2} = \frac{\partial u}{\partial y} - \frac{\partial p}{\partial x}$$

(8)となる。これが、圧力勾配$\partial p/\partial x$があるときの2平行平板間のx方向流れを記述する式になっている。この式を

† 一向方向流れに圧力pがy、zに依存しない場合は、運動方程式から次のように導出することができる。いま、圧力pがyに依存するととすると、(6)式に相当して、流体粒子に働く力のx方向成分は

$$-\rho \frac{d\rho}{dt} \Delta x\Delta y\Delta z - \rho \frac{d\rho}{dt} \Delta x\Delta y\Delta z$$

と表される。これが(1)式の右辺のx成分である。一方、(1)式の左辺のx成分は、$u=(u, 0, 0)$より0であるから、(1)式のx成分は$-\partial p/\partial y=0$となり、これより、pがyに依存しないことが分かる。x方向も同様である。

† 直方体に作用する力のモーメントのつまり合いを考えると、面S_Eと面S_Bに、$\mu du/dy|_{y=y_0}$で与えられるせん断応力が生じていることが分かる。しかし、それは大きさが等しく向きが反対であるので、合計は0となる。

-26-
\[
\frac{\partial u}{\partial t} - \mu \frac{\partial^2 u}{\partial x^2} = -\frac{\partial p}{\partial x}
\]
と書き表すと，左辺は \(x \) を含まず，右辺は \(y \) を含まないので，結局両辺は \(t \) のみの関数となる。つまり，圧力勾配 \(\frac{\partial p}{\partial x} \) は場所 \(x \) に依らないことになる。これを \(-a(t) \) とおけば，上の式は
\[
\frac{\partial u}{\partial t} = \mu \frac{\partial^2 u}{\partial x^2} + a(t) \quad (\text{ただし } a(t) = -\frac{\partial p}{\partial x}) \tag{9}
\]
となる。

特に定常流の場合を考えると，左辺 \(= 0 \) とな り， \(a \) は定数である。従って
\[
\mu \frac{\partial^2 u}{\partial x^2} + a = 0 \tag{10}
\]
が得られる。この式は流体粒子に加わる圧力差と粘性による力がつりあっていることを意味している。

2.3 ポアズイ流

次に，運動方程式(10)から，2 平行平板間の定常流の速度分布を求めてみよう。この式を 2 回積分して
\[
u = -\frac{a}{\mu} y^2 + C_1 y + C_2 \quad (C_1, C_2: \text{積分定数})
\]
が得られる。積分定数 \(C_1, C_2 \) は境界条件から決まなければならない。それは平行平板上の条件であるが，通常，境界と接している流体粒子はその境界と同様速度をもつと考える。これを粘着（すべりなし）条件という。今の場合，上下の板は静止しているので，平板上での境界条件は，平板間の隔間を \(h \) として，

\[
u = 0 \quad \text{at} \quad y = \pm h/2
\]
となる。この条件を課すと，\(C_1 = 0, C_2 = ah^2/4\mu \) と決定される。

結局，2 平行平板間の定常流の速度分布は
\[
u = \frac{a}{\mu} \left(\frac{h^2}{4} - y^2 \right) \tag{11}
\]
のような \(y \) の 2 次式で表される。このような流れは 2 次元のポアズイ流流れという。（Fig. 6(a) 参照）管を通る流量は
\[
Q = \int_0^\alpha \frac{u^2 \pi dr}{8} = \pi a^2 \alpha = \left(-\frac{\partial p}{\partial x} \right) \frac{\pi a^4}{8\mu}
\]
で与えられる。すなわち，円管を通る流量は管の半径の 4 乗と圧力勾配に比例し，粘性率に逆比例する。これはポアズイ流の法則と呼ばれ，存知の人も多いだろう。

2.4 ナビエ－ストークス方程式

以上，流体粒子に対する運動方則(1)から，ポアズイ流れを導出した。一般に方程式(1)は外力がない場合，非圧縮性ニュートン流体に対し，位置 \(x, t \) での流体粒子の速度を \(u(x, t) \) として
\[
\frac{\partial u}{\partial t} = \nabla p + \mu \nabla^2 u \tag{13}
\]
と書くことができる。右辺の \(\Delta \) は，\(\Delta = \partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2/\partial z^2 \) で，ラプラスアンと呼ばれている。
式(13)式はベクトルの式になっているので，\(x, y, z \) 成分の 3 つの式からなる。例えば，\(x \) 成分の 3 式は
\[
\frac{\partial u}{\partial t} = \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \tag{14}
\]
である。前節で考えた 2 平行平板間のポアズイ流流れの場合には，\(u \) が \(x \) および \(y \) に無関係であったから(14)式右辺の（）の中は \(\partial^2/\partial y^2 \) のみ残る。このことと(4)式を考慮すると，(8)式と(10)式が一致するのは容易に分かる。

さて，ナビエ－ストークス方程式(13)の各項の物理的意味について考えてみると，左辺は[慣性力]，右辺第 1 項は[圧力]，第 2 項は[粘性力]を表している。ここで，慣性と言うのはニュートンの第一法則を慣性の法則ということも考えると，物体が運動状態をそのまま維持しようとする性質のことをいう。例えば，電気が急ブレーキをかけて停止したとき，電車の中の物体はブレーキをかける直前速度で前に飛び出そうとする。このとき物体を前へ飛び出させようとする力が慣性力である。流体粒子の運動の場合，(2)式から明らかにように慣性力は 2 つの項からなる。一つは時間微分の項（非定常項）であり，もう一つは流体粒子の移動から生じる項で移流項と呼ばれる。

2.4.1 無次元パラメータ

まず，慣性力と粘性力の大きさの比を考えてみよう。流れを特徴づける代表的な長さを \(L \)，速度
を \(U \) とする。例えば、2.2 節の例では、平行平板の間隔 \(h \) が \(L \) に当たる。中心流速（あるいは平均流速）が \(U \) に当たる。③式で、\(D/\mu \sim U/L, \Delta \sim 1/L^2 \) だから、
\[
\left[\text{慣性項} \right] = \frac{\rho U^2}{\mu} \frac{\partial U}{\partial x} = \frac{\rho U L}{\mu} \\
\left[\text{粘性項} \right] = \frac{\mu}{\rho L^2} \frac{\partial U}{\partial x} = \frac{\nu L}{\mu}
\]
となる。この比の値:
\[
R = \frac{\rho U L}{\mu}
\]
を Reynolds 数という。即ち、Reynolds 数は慣性力と粘性力の大きさの比を表している。従って、Reynolds 数の大きな流れでは、慣性力が粘性力に比べて大きいので、粘性の影響は限られた領域にとどまり、ほとんどの領域で粘性の影響は無視できる。逆に、Reynolds 数の小さい流れでは、粘性力の方が慣性力より大きいので、慣性の影響を無視してもよい。慣性力が無視できることとは、移流項が無視できることを意味する。これにとってナビエ＝ストークス方程式は線形となるので、低 Reynolds 数流れの解析が著しく容易になる。

非定常な流れの場合には、非定常性を表すパラメータとして Womersley 数と呼ばれる無次元量がよく用いられる。振動数 \(\omega \) で振動する流れを考えると、ナビエ＝ストークス方程式の左辺の非定常項の大きさは \(\rho \omega U \) の程度であるから、この項と粘性項の比をとると
\[
\left[\text{非定常項} \right] = \frac{\rho \omega U L}{\mu} = \frac{\rho \omega U L^2}{\mu}
\]
と/or
\[
\left[\text{粘性項} \right] = \frac{\mu}{\rho L^2} \frac{\partial U}{\partial x} = \frac{\nu L}{\mu}
\]
となる。これを Womersley 数の 2 乗と定義する。
つまり、Womersley 数 \(\alpha \) は
\[
\alpha = \frac{\rho \omega U L^2}{\mu}
\]
で与えられる。この定義式から明らかであるように、Womersley 数が小さいと非定常性の効果は無視でき、逆に Womersley 数が大きいとこの効果が大きい。

例えば、円管内の振動的な流れを考えると、Womersley 数が小さいと各断面で各瞬間にポアズレイ流れが実現し、最大流速が時間変動するだけである。それに対し、Womersley 数が大きいと、粘性項が重要である管壁近傍を除いて、00 式の左辺の非定常項と右辺の圧力項がつりああって、各断面において平らな速度分布になる（つまり、管内の大部分の流体は一体となって振動する）。

3. 層流と乱流

前節で、円管内の流れとして、ポアズレイ流れをニュートンの運動方程式の解として紹介した。その導出過程から明らかであるように、ポアズレイ流れは円管内の流れとして Reynolds 数の大小に拘らず常に運動方程式の解になっている。しかし、実際ににはポアズレイ流れは Reynolds 数が大きくなると安定に存在できなくなっている。実際の流れはこれとは異なった流れが実現する。それが乱流である。本節では、円管内の流れについてポアズレイ流れから乱流への遷移について見てみよう。

3.1 円管内流れにおける層流から乱流への遷移

レイノルズ(R833)は Fig. 4 のような実験装置を用いて、直円管の中に水を流し、水の速度と管径をさまざまな変えたときの流れの模様を、管の入口付近に着色水を注入することによって観察した。

管が比較的細いか、または流れが比較的遅い間は、着色水は管の軸に平行な一本の筋となって流れる (Fig. 5(a))。このとき流れは時間的に変化せず、管入口からある程度下流ではその速度分布はポアズレイ流れとなる。

この状態から流速を次第に増していくと、流速がある限界を超えたとき、着色水の筋が乱れて、色素は管の断面に広がってしまう (Fig. 5(b))。これは流れの中に複雑で非定常な内部運動が発生したことを意味する。このような、空間的にも時間的にも複雑で細かい不規則な変動を含む流れの状態を乱流という。これに対し、ポアズレイ流れのような比較的単純で規則的な流れを層流という。層流という言葉は各流体粒子が層状をなして平行に流れるという印象を受けるが、後で覚えるように、実際には必ずしも平行に流れに限らず、3 次元的な構造をもつ流れを層流で実現する。

さて、円管内の流れに戻って、乱流のとき、内部運動によって水は断面内で攪乱されるため、(平均)速度分布も放物線形ではなく、管の中心部ではほぼ一定で、管壁付近で急な速度勾配をもつ分布になる (Fig. 6)。このため、水が管壁から受ける粘性抵抗が増大し、同じ圧力差のもとでは流動
Fig. 4 レイノルズの実験装置の概略図。水槽の水が帯状型の入口から円管内に流入し、それと同時に色素が細い管を通って円管に入ってくる。その色素の流れる様子を見て円管内の流れの運動状態を判断する。

Fig. 5(a) 層流。色素は二の管上の筋となる。
(b) 乱流。色素は途中から乱れて管全体に広がる。

Qは減少する (Fig. 7)。この乱流への移行を遷移という。

円管の直径や流速をいろいろに変えて同じ実験を行った結果、乱流への遷移は0.9式で定義されるReynolds数Rのある値を境にして起こることが見いだされた。遷移を与えるReynolds数の値Rcを臨界Reynolds数という。ここで、Rcの値は一定ではなく外部条件によって変化することを注意しておこう。遷移は、管の入口付近で流れの中に発生する攪乱が、下流に行くにつれて発達することによって引き起こされる。このため、入口に相当な丸みをつけて攪乱を小さくするとRcは上昇し、逆に入口を狭めて攪乱を大きくするとRcは低下する。

レイノルズ数の変化が滑らかであるように精密な実験によって、攪乱を小さくしていくと、Rcはたくさん大きくなることが分かった。現在では、攪乱が小さい場合でのRcは無限大ではないかと考えられている。これに対して、攪乱を大きくすると実験的にRc～

Fig. 6 円管内の流れ。(a) 層流 (ボアズイユ流れ)の速度分布、物物線になる。(b) 乱流の平均速度分布、管中央部ではなく半角で、管壁近傍で急な速度勾配をもつ。

Fig. 7 円管内流れにおける、壁面摩擦係数λとReynolds数Rとの関係。ここで、壁面摩擦係数は、\[\lambda = \frac{P}{\rho U^2} \] で定義される (\(P \): 壁面圧力差、\(\rho \): 管径、\(U \): 流体の平均流速)。

層流のとき \(\lambda \propto R^{-1} \), 乱流のとき \(\lambda \propto R^{-1/4} \)。

2000程度の下限が存在することが知られている (Reynolds数の定義式0.9で、長さLとして管の直径2\(a \)を、速度Uとして管断面内の平均流速を用いている)。言い換えれば、Reynolds数がおよそ2000よる小さいときは、どのように大きな攪乱を加えても、十分下流では攪乱は減衰し、流れは層流になる。この約2000という値が、円管ボアズイユ流れの臨界Reynolds数として知られているが、理論的には未だその値は確定していないことを付け加えておく。
3.2 血液流れ

ここで、生体内の血液流れの流体力学的なパラメータを見ておく。Fig. 8に血管の各レベルにおける血管の数、半径、断面積、平均流速の変化を大きく示した。左心室から出る一本の大動脈から出発して、血管は分岐を繰り返し、動脈、細動脈を経て毛細血管にいたり、そこで各組織組織と種々の物質交換を行った後、細静脉、静脉、そして大静脈を経て右心房に戻る。Fig. 8に示す通り、体中的毛細血管の数は10⁸以上にもなる。血管径は末梢に行くにつれ減少するが、その本数が増えるので、各血管レベルの総断面積は次第に増加して、毛細血管レベルの総断面積は大動脈の300倍にもなるというデータがある。血流量が保存するとともに、毛細血管の平均血流速度は大動脈の1/300倍ということになる。これらから血管の直径および平均流速を用いて平均のReynolds数を見積もりると、大動脈でR~10⁶、毛細血管でR~10⁻³~10⁻²程度となる。

この評価からまず、生体における血液流れのReynolds数は極めて広い範囲にわたっていることに注意しよう。つまり、Reynolds数が1に較べて大きな太い血管内の流れは、慣性力が卓越している。一方、Reynolds数が1に較べて小さい細い血管内の流れは粘性力の方が重要で、慣性力はほとんどの場合に無視できる。このように、太い血管内と細い血管内の血液流れでは、流体力学的な性質が全く異なるのである。

次に、大動脈の平均Reynolds数が上で述べた円管内流れの臨界Reynolds数と同じオーダーであることは興味深い。大動脈のReynolds数の評価として、別の方法を一つ紹介しておこう。心臓の単位時間当たりの血液拍出量をQ、大動脈の半径をr₀とすれば、大動脈の断面積はπr₀²であるから、そこでの平均流速は

\[U = \frac{Q}{\pi r₀²} \]

で与えられる。よって、大動脈における平均Reynolds数は

\[R = \frac{\rho U(2r₀)}{\mu} = \frac{2\rho Q}{\pi \mu r₀} \]

となる。Rosenは、種々の動物の大動脈の半径r₀と心拍出量Qの間の関係として

r₀=0.013 Q

を得ている。これを上式に代入すると

\[R = 2\rho / 0.013\pi \mu \]

となる。血液粘度を4cPとして、μ/ρ=0.04を代入すると

R=1224

が得られる。

いずれの方法でも大動脈の平均Reynolds数は円管内流れの臨界Reynolds数に近く、しかも少し小さい値になっていることが分かる。このことは大動脈は基本的に層流になっていることを意味している。

以上の議論はすべて定常流を仮定していることに注意しなければならない。Fig. 5(b)から分かるように、Reynolds数がRsより大きくても、管入口からすぐに乱流になるわけではない。小さな攪乱
が発達して乱流になるには時間がかかるのである。また、一旦乱流になったとき流速が遅くなってもすぐに乱れは消失しない。このことから推察されるように、非定常な流れの乱流への遷移はその時間変化の割合に関係している。

血流のように拍動流の場合の乱流遷移には、拍動の周期あるいは Womersley 数が関係している。犬の大動脈流れて直接計測した結果からは、心拍周期のうち減速期に乱流が計測されている。また、Womersley 数の増加に伴って R_e が増大するという実験報告もあるが、その詳細については未だ十分には分からない。

大動脈内の流れでは、非定常性の他に湾曲やテイバーなど血管形状も乱流への遷移に影響していると考えられる。その乱流遷移は現在活発に研究されている課題である。興味ある方は専門書を参照して頂きたい。

この節の最後に、川の流れ、風の流れ、あるいは自動車の周りの空気の流れなど日常で経験する流れがほとんど乱流であるのに対し、生体に於ける血液流れはほとんど層流になっていることを再度述べておきたい。大なる動物の大動脈において乱流が計測され、乱流の重要性が指摘されているが、その他の血管内ではほとんどどの領域で規則的な流れが層流になっているのである。

3.3 層流における渦や剝離

ここで、誤解を避けるために層流というのは必ずしも平行な流れである必要がないことを最後に繰り返しておこう。例えば、低 Reynolds 数の流れでも渦や流れの剝離は起こる。また、時間的に変化する非定常流れが必ずしも乱流であるとは限らないことは言うまでもないであろう。

Fig. 9 に示すのは平らな壁面に四角いキャビティがあるときの流れの様子である。Reynolds 数は、キャビティの高さを用いて評価して、0.01 である。実験は流線を模式的に示す。流体が左から右に流れているとき、キャビティ内には時計まわりの回転運動が起こっていることが分かる。この流れには不規則性はなく、層流である。Reynolds 数が大きいときの流れもキャビティ内に渦運動が起こることは容易に想像されるが、そのとき渦の中心が下流に寄っているのに対し、低 Reynolds 数の流れでは渦の中心は上流と下流のほぼ中央にあるのが特徴である。Reynolds 数が 0 のとき流線が上・下流で厳密に対応することは、このときナビエ＝シュクス方程式が線形であることから示すことができる。

層流の渦運動のもうひとつの例として、Fig. 10 に平板の上方四角い障害物があるときの流れの様子を模式的に示した。平板に沿って左から流れてきた流体は、障害物の手前で平板から離れると上方に寄せられる。これを流れの剝離といい、流れが平板から離れる点を剝離点という。流れの剝離点と障害物の間の領域では、流体が時計周りに回転しており渦があるのが分かる。障害物を越えた下流側にも同様に、渦の領域が生じている。Reynolds 数が小さい場合には流れの上流側と下流側にある渦の領域は対称である。Reynolds 数が大きくなると次第に下流側の方が大きくなって、
さらに Reynolds 数が大きくなると流れは乱流に遷移する。

以上、2つの例で見たように層流でも渦や流れの剥離は起こる。生体内の血液流れにおいても、血管の分岐部や突出部、溝曲部など幾何形状の変化があるところでは、渦や剥離は当然起こり得る。このとき流れは規則的であり、乱流れで見られるような不規則で複雑な流れの変動は見られない。

4. おわりに

流体力学の初歩として、限られた話題について若干の説明を行った。紙面の都合により、“流線”や“渦”などいくつかの用語については定義なしで用いた。また、流体粒子に作用する応力は本来なら、その変形の割合と関係づけてもっと厳密に議論すべきであろう。流体力学は工学の多くの分野の基礎となるものであるので、それに関する優れた教科書、研究書は数多い。本稿の不備はそれらで補っていただきたさい。また、本稿により興味をもたれた読者がそれらの専門書で学習を進めれば幸いである。

参考文献
2) 流体力学ハンドブック 丸善 (1987).