Intracerebroventricular Injection of Ghrelin Induces Sleep-Like Behavior in Neonatal Chicks

Tetsuya Tachibana¹, Atsushi Ohgushi², Mitsuhiro Furuse²

¹ United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
² Laboratory of Advanced Animal and Marine Bioresources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan

Ghrelin, a novel growth hormone (GH)-releasing acylated peptide, is recently isolated from rat stomach. This peptide stimulates the release of GH from the anterior pituitary through the GH secretagogue receptor and feeding in the rat. However, intracerebroventricular (ICV) injection of rat ghrelin inhibited feeding of chicks under both ad libitum feeding and fasting conditions (Furuse et al., 2001). Thus, we have investigated the behavioral changes by ghrelin with special reference to sleep-like behavior of the neonatal chick in two experiments. Four behavioral categories were distinguished and scored as follows: 1, standing with eyes open; 2, sitting with eyes open; 3, standing with eyes closed; and 4, sitting motionless with head drooped (sleeping posture). Firstly, ICV injection of 0, 1.25, 2.5 and 5 μg of ghrelin was done to ad libitum fed birds. Secondly, several doses (0, 0.5, 1 and 2 μg) of ghrelin were injected ICV into chicks previously deprived of food for 3 h. In both experiments, scores of ghrelin treated birds were higher than those of control birds. These results suggest that one of the central roles of ghrelin in the neonatal chick is induction of sleep.

Key words: ghrelin, intracerebroventricular, sleep-like behavior, chick

Introduction

Domestic chickens are precocial and start spontaneous feeding at hatch. In the neonatal stage, several factors that stimulate feeding in mammals have been investigated in the chick. These factors are neuropeptide Y (NPY), orexin-A, orexin-B, motilin, melanin-concentrating hormone and galanin, but except for NPY (Furuse et al., 1997a; Bungo et al., 2000; Kawakami et al., 2000) these factors failed to stimulate feeding in the neonatal chick (Furuse et al., 1999; Ando et al., 2000). Thus, the mechanism for stimulatory effects on food intake in the neonatal chick may be specific. Especially the effect of ghrelin was interesting. Ghrelin is the newly purified peptide from the stomach (Kojima et al., 1999) and stimulates feeding in the rat (Tschop et al., 2000; Wren et al., 2000). However, the central effect of ghrelin in chicks was reverse to
Intracerebroventricularly (ICV) injection of rat ghrelin strongly suppressed food intake in chicks under both ad libitum and fasting conditions (Furuse et al., 2001).

In the suppressive effect of peptides on feeding, two behavioral patterns have been observed in the neonatal chick. One is the motionless and narcoleptic behaviors induced by glucagon-like peptide-1 (Furuse et al., 1997b; Bungo et al., 1999b). Another is active and exciting behaviors by corticotropin releasing factor (Furuse et al., 1997b; Ohgushi et al., 2001).

To confirm the central effect of ghrelin, sleep-like behavior was determined under ad libitum feeding condition in the neonatal chick. Furthermore, we determined the sleep-like behavior after food deprivation to examine whether ghrelin induces sleep-like behavior beyond the appetite strengthened by fasting.

Materials and Methods

Day-old male broiler chicks were purchased from a local hatchery (Mori Hatchery, Fukuoka, Japan). The birds were maintained in a room with 24-h lighting and at a temperature of 28°C. They were given free access to a commercial starter diet (Toyohashi Feeds and Mill Co. Ltd., Aichi, Japan). Before each experiment, body weight was measured and the chicks were distributed into experimental groups such that the average body weight within groups was as uniform as possible within the same experiment. The birds were reared individually. Birds of 2 days-old fed either ad libitum (experiment 1) or deprived of food for 3 h (experiment 2) were given the diet for 2 h immediately after the ghrelin injection.

Ghrelin (rat) was purchased from Peptide Institute, Inc. (Osaka, Japan). The peptide was dissolved in a 0.1% Evans Blue solution, which was prepared in 0.85% saline. Saline containing Evans Blue was used as a control (0 μg level of ghrelin). The birds were injected ICV using a microsyringe according to the method of Davis et al. (1979) and Furuse et al. (1999) at a volume of 10 μl. Injected doses of ghrelin were as follows: experiment 1, 0 (control), 1.25, 2.5, 5 μg; experiment 2, 0 (control), 0.5, 1, 2 μg.

Behavioral patterns were observed at 120 min (experiment 1) or 30, 60 and 120 min (experiment 2) after the injection and classified into four categories. During these periods, chicks were freely given the diet and water. Posture scores were noted during feeding using a modification of the method of van Luijtelaar et al. (1987). Four behavioral categories were distinguished and scored as follows: 1, standing with eyes open; 2, sitting with eyes open; 3, standing with eyes closed; and 4, sitting motionless with head drooped (sleeping posture).

At the end of the experiments, the birds were sacrificed with an overdose of pentobarbital, and the location of the injection site was verified. Data from individuals lacking dye in the lateral ventricle were deleted. The number of birds used for experiment 1 was as follows: control (0 μg), 10; 1.25 μg, 9; 2.5 μg, 10; and 5 μg, 9. The number of birds used for experiment 2 was as follows: control (0 μg), 8; 0.5 μg, 10; 1 μg, 7; and 2 μg, 8.
Fig. 1. Posture scores at 2h following ICV injection of ghrelin in neonatal chicks under an ad libitum feeding condition. Values are means±S.E.M. The number of birds used was: control (0µg), 10; 1.25µg, 9; 2.5µg, 10; and 5µg, 9. Four behavioral categories were distinguished and scored as: 1, standing with eyes open; 2, sitting with eyes open; 3, standing with eyes closed; and 4, sitting motionless with head drooped (sleeping posture). Posture score = 2.01 (SE 0.32) + 0.26 (SE 0.12) X, R² = 0.120, P < 0.05.

Table 1. Effect of ghrelin on the various behavioral categories of the neonatal chick after 120 min following administration

<table>
<thead>
<tr>
<th>Ghrelin</th>
<th>Number of chicks with the postures of score⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>0µg</td>
<td>7 1 0 2</td>
</tr>
<tr>
<td>1.25µg</td>
<td>3 1 1 4</td>
</tr>
<tr>
<td>2.5µg</td>
<td>3 1 1 5</td>
</tr>
<tr>
<td>5µg</td>
<td>1 2 1 5</td>
</tr>
</tbody>
</table>

The number of chicks in each group was as follows: 0µg, 10; 1.25µg, 9; 2.5µg, 10; 5µg, 9.

⁴: Standing with eyes open, 2: Sitting with eyes open, 3: Standing with eyes closed, 4: sitting motionless with head drooped (sleeping posture).

The results are presented as the mean±S.E.M. Regression equations were fitted to the data.

Results and Discussion

Figure 1 shows the effect of ICV injection of 1.25, 2.5 and 5µg (0.38, 0.75 and 1.5 nmol) of ghrelin on posture scores of neonatal chicks fed ad libitum at 2h after the injection. Table 1 summarizes the distribution of chicks in each group categorized by the posture scores. Central ghrelin induced sleep-like behavior in a dose-dependent
Fig. 2. Posture scores over 2 h following ICV injection of ghrelin in neonatal chicks after 3 h fasting. Values are means±S.E.M. The number of birds used was: control (0 μg), 8; 0.5 μg, 10; 1 μg, 7; and 2 μg, 8. Posture score at 30 min = 2.24 (SE 0.34)+0.75 (SE 0.30) X, R²=0.170, P<0.05. Posture score at 120 min = 1.88 (SE 0.39)+3.02 (SE 1.03) X − 1.46 (SE 0.47) X², R²=0.242, P<0.01.

Table 2. Influence of ghrelin on the various behavioral categories of the neonatal chick after 30, 60 and 120 min following administration

<table>
<thead>
<tr>
<th>Time</th>
<th>Ghrelin</th>
<th>Number of chicks with the postures of score*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>30 min</td>
<td>0 μg</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0.5 μg</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1 μg</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2 μg</td>
<td>1</td>
</tr>
<tr>
<td>60 min</td>
<td>0 μg</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0.5 μg</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1 μg</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2 μg</td>
<td>0</td>
</tr>
<tr>
<td>120 min</td>
<td>0 μg</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0.5 μg</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1 μg</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2 μg</td>
<td>3</td>
</tr>
</tbody>
</table>

The number of chicks in each group was as follows: 0 μg, 8; 0.5 μg, 10; 1 μg, 7; 2 μg, 8.

*: Standing with eyes open, 2: Sitting with eyes open, 3: Standing with eyes closed, 4: Sitting motionless with head drooped (sleeping posture).

manner.

Figure 2 gives the effects of ghrelin on posture scores of 3 h fasted chicks. In addition, Table 2 shows the distribution of chicks in each group categorized by the
posture scores. The doses were lowered from those used in experiment 1 since ghrelin strongly inhibited food intake under ad libitum feeding conditions (Furuse et al., 2001). All of the groups ICV injected with ghrelin showed higher posture score than the control. Posture scores at 30 min showed a tendency to increase in a dose dependent fashion. At 2 h the posture score was curvilinearly modified by the central ghrelin.

These observations demonstrated that central administration of ghrelin induces sleep-like behavior in neonatal chicks. It is well known that ghrelin stimulates the release of growth hormone (GH) from the anterior pituitary through the GH secretagogue receptor (Kojima et al., 1999). Earlier studies demonstrated that systemic administration of GH induced rapid eye movement (REM) sleep in several mammalian species (Drucker-Colin et al., 1975; Mendelson et al., 1980). It is possible that GH release stimulated by ghrelin might induce sleep-like behavior in neonatal chicks.

Ghreline induced the sleep-like behavior during vigorous feeding after food deprivation, suggesting that central ghrelin may reduce food consumption by inducing sleep. This observation was similar to that induced by glucagon-like peptide-1 (Furuse et al., 1997b; Bungo et al., 1999b), clonidine, an α2-receptor agonist (Bungo et al., 1999a) and morphine (Bungo et al., 1999c), but not by corticotropin releasing factor (Furuse et al., 1997b; Ohgushi et al., 2001). However, chicks were excited by central ghrelin after a short period (less than 30 min) and vocalized loudly. The reason for this was unclear. Further studies involving more behavioral tests and the anorexigenic mechanisms are necessary to elucidate the action of these peptides.

Acknowledgements

This study was supported by a grant-in-aid for scientific research from the Ministry of Education, Science and Culture, Japan and Uehara Memorial Foundation.

References

