当研究室では、現在までに 3D 遷移金属を用いたナノサイズの磁化物を作製し、
観測への応用を研究してきている。この道具を作製する方法として、2D ハイパーパーツの使用方法
による可能性を検討している。一方では MHI の基本的な磁化現象における電荷コロナと思定を
確認するための効果としてその根本性を確認している。1)
本研究では、鉄磁性磁化物であるヘリウムナノ粒子(Freq)をベースに Mn と Co と Zn イオンを
導入し、その磁化測定を行った。更に Mn サブフルート Mn_{x}Zn_{1-x}Fe_{2}O_{4} (x = 0.1) は 180 °C で熱処理を
した、その磁化特性を測定した。さらに、磁化測定の結果から単結晶も含む下記の磁化特性的
観察も確認された。これらの中から、それぞれの磁化特性とその特徴的な磁化特性を確認した
ことである。また、Co サブフルートは Mn と Zn の 2 つをそれぞれ測定し、その磁化特性を測定した。さらに、
磁化特性の解析に磁化測定結果との関係を確認し、試料を更に精製した。試料の特性は、磁化特性
の測定を向上させる磁化率を持ち合わせており、現在研究で応用されている鉄磁性
化物を上昇する関数を示した。これらの特性が示した結果は、観測と治験を同
時に行う十分なスパイスエンジニアへの応用への可能性を示している。

図 1. Mn_{x}Zn_{1-x}Fe_{2}O_{4} と Mn_{x}Co_{1-x}Fe_{2}O_{4} の磁化特性

図 2. Co_{x}Zn_{1-x}Fe_{2}O_{4} の磁化特性


27aPS-126

MnBi の強磁場中合成

東北大学院 三井好和、梅津運翌、渡辺和雄
鹿児島大理 小山佳一

Synthesis of MnBi in high magnetic field

IMR, Tohoku Univ. Y. Mitsui, R. Y. Umetzu, K. Watanabe
Kagoshima Univ. K. Koyama

Bi-Mn 系強磁性材料はこれまで Bi-rich 組成について、液相を介して
合成や、空気手試によっての磁場中処理が行われ、組成や磁気特性
の制御が行われてきた。一方で、液相合成組成の MnBi や団相相対
する磁場効果については不明である。本研究では、磁場中で団相相対
処理を行い、MnBi の団相相対に対する磁場効果について明らかにした。

MnBi は、強磁場中で団相相対効果を変化させて合成した。Mn 粉末と Bi 粉
末を混合し、20 MPa の压力で成型した。作製した粉末状試料は、
石英管内包し、共通温度 535 K で下の 523 K で 5 時間の熱処理を 0T
及び 15 T で行った。

図 1. Kondo 点近傍における交流磁化曲線の測定

仙台高等家政、自衛隊、高橋真梨、佐々木志
Measurement of ac-Magnetization Curves on Soft Magnetic Materials at Temperatures near Curie Point by Lock-in Amplifier

表面磁化曲線の測定は、Kondo 点 7 T 近傍の磁化特性を調べる有効な
方法の 1 つである [1]。多くの測定結果において、磁場強度によって磁化
量が大きく影響されることを示している [2]。これは、弱
磁場においても磁化曲線が広範な磁化曲線を示すことを意味する。表
には、以降の研究において、高強度磁化機能を有するロックインアンプ
を用いて磁化曲線を測定する方法を提案した [3]。本稿では、8 ケ以上の強
磁場を用いて、7 T 磁場に着目した磁化曲線を観察する。図 1(a)、(a)
NiZn フェライト、及び (b) グリニウムの磁化曲線を示す。観察では、
より新しい実験方法と結果、及びスケーリング解析に基づいて講論する。

図 1. キュラピー点近傍の (a) NiZn フェライト及び (b) グリニウムの磁化曲線


27aPS-127

MnBi の強磁場中合成

東北大学院 三井好和、梅津運翌、渡辺和雄
鹿児島大理 小山佳一

Synthesis of MnBi in high magnetic field

IMR, Tohoku Univ. Y. Mitsui, R. Y. Umetzu, K. Watanabe
Kagoshima Univ. K. Koyama

Bi-Mn 系強磁性材料はこれまで Bi-rich 組成について、液相を介して
合成や、空気手試によっての磁場中処理が行われ、組成や磁気特性
の制御が行われてきた。一方で、液相合成組成の MnBi や団相相対
する磁場効果については不明である。本研究では、磁場中で団相相対
処理を行い、MnBi の団相相対に対する磁場効果について明らかにした。

MnBi は、強磁場中で団相相対効果を変化させて合成した。Mn 粉末と Bi 粉
末を混合し、20 MPa の压力で成型した。作製した粉末状試料は、
石英管内包し、共通温度 535 K で下の 523 K で 5 時間の熱処理を 0T
及び 15 T で行った。

図 1. Kondo 点近傍における交流磁化曲線の測定

仙台高等家政、自衛隊、高橋真梨、佐々木志
Measurement of ac-Magnetization Curves on Soft Magnetic Materials at Temperatures near Curie Point by Lock-in Amplifier

表面磁化曲線の測定は、Kondo 点 7 T 近傍の磁化特性を調べる有効な
方法の 1 つである [1]。多くの測定結果において、磁場強度によって磁化
量が大きく影響されることを示している [2]。これは、弱
磁場においても磁化曲線が広範な磁化曲線を示すことを意味する。表
には、以降の研究において、高強度磁化機能を有するロックインアンプ
を用いて磁化曲線を測定する方法を提案した [3]。本稿では、8 ケ以上の強
磁場を用いて、7 T 磁場に着目した磁化曲線を観察する。図 1(a)、(a)
NiZn フェライト、及び (b) グリニウムの磁化曲線を示す。観察では、
より新しい実験方法と結果、及びスケーリング解析に基づいて講論する。

図 1. キュラピー点近傍の (a) NiZn フェライト及び (b) グリニウムの磁化曲線