31a—NE—10 EHS 実験 II Software System 及びデータ解析

EHS（European Hybrid Spectrometer）による実験において、データ解析等に用いられている Software System 及び解析結果を発表する。EHSは大きく分けて、泡箱とカウンター測定器から成っており、CERN-SPS によって加速された入射粒子を用いて実験する。Software System は on-line データ採取部と off-line データ解析部から成っており、その後には PATCHY を、メモリ管理には HYDRA System を用いている。On-line の段階では NORD-100 コンピュータを用いて各カウンターを管理の状態をチェックしながら各データを HYDRA 形式で磁気テーブに出す。同時に CERNET を通じて IBM/680 により Spectrometer の performance check を行う。Off-line 処理は、泡箱データによる解析の際、on-line 内での磁気空間再構成及び ISIS 設でデータの粒子識別から成る。そして最終的にはこれらのデータを結び合わせて 1 つの解析再構成し、その粒子を識別する。現在 EHS を用いた実験としては NA16（チャーム粒子の寿命測定）と NA23（Diffraction Oscillation Lens）解析）という実験のデータがあり、その解析が進んでいる。図はサーベイと呼ばれるジョブり出力結果で、これは空間再構成されたビームトラックを用いて drift chamber の drift time と drift distance の関係を解析した結果であり、大体線形な関係をうかがう。反応ホール再構成前にこれを用いてシステム全体を調整する。

31a—NE—11 EHS 実験 III スキャン及び測定結果

泡箱とカウンター測定器からなる EHS（European Hybrid Spectrometer）のような複合システムによる実験の場合、泡箱を含むカウンター測定器からの on-line データ（磁気テーブ）を解析する必要がある。この解析方法及びその結果を発表する。この実験で使われた泡箱は Rapid Cycling Bubble Chamber（RBC）と呼ばれているので 20Hz の周期で旋回が行なわれる泡箱であった。もちろんこの泡箱の中味は液体水であり、磁場の中ほど 3T という磁電極マグネットの中に反応している。さらに、周期 50Hz のフランシュトーカーにより反応が起こる場合の反応の結果を発表する。これらは泡箱周辺のカウンターからの情報により可能であるが、このカウンター情報と単一の電荷数との対応がどのように反応の場にあるかを Hybrid system の反応がどのように反応するかを示す。これに続くスキャンは終了の泡箱だけの場合とは変する。その方法を簡単に説明すると、反応が起こった瞬間の後方（入射ビームの進行方向）のカウンターで判定された場合の写真をスキャンする。スキャンの後に（入射ビームの入射側）に置かれたカウンターによって反応する入射ビームを空間再構成する結果、実際の実験で得られた結果をこのビームトラックであることを予想し、この予想は実際の反応式におけるマルチサイドの分布でその平均は elastic を除いた場合 9 になった。