大統一理論でのGauge Hierarchyを説明するためには、超対称性がMx、またはTeVのエネルギーで破壊され barleyで残っている理論が有力である。通常の大統一理論では（たとえばSU(5)）陽子崩壊が4体フェルミ子型の大群を相互作用として引き起こされ、もしくは実験にかかるとしても知られている。これに対して超対称な大統一理論では、重力が強くならず、と共にフォーカス及びレプトンの超対称性partnerとしてスカラーフォーク、スカラーレプトンが存在する。これらのスカラーレプトンは陽子崩壊に関与すると、通常の4体フェルミ子相互作用よりも次元の高、従って充分にsuppressされている相互作用として現れる可能性がある。

陽子崩壊でのこれらの効果を見るために、通常のSU(3)xSU(2)xU(1)対称性が超対称性を伴うエネルギーで残っている対称性として、ABを含む2体のOperatorとModel-independentに数える。この結果、一般には4体のもう1つのOperatorが寄せることもあり、この時、陽子崩壊のスカラーフォーク等が存在するとも、スカラーレプトンのvirtual effectで、陽子は早く崩壊し過去の実験事実と反するように思われる。従ってこのような相互作用を著しくするための対称性が存在に組み込まれていかなければならず、いわゆるR-不変性を利用して具体的にどのように対称性を組み込んだ模様とSU(5)の場合即めて作ってみた。更に場合次元のABを0の相互作用は存在でかかる特徴があることがわかった。

この論文はプレプリントMPI-PAB/PTh 55/81として公にされ、Nucl. Phys.に出版される。

Petrov Type D非回転時空は、いわゆるC-metricによって表わされる。C-metricの構造の理解に対するうろこ鎮は、座標Parameterizationの不確定性にあった。しかしながら我々は、Lorentz時空の構造を適切に理解しているとされる座標を用い、C-metricもl.gの時空の構造に分類した。今回は、これらのうち一つのクセス(AK,AK,AU)と座標についての物理的な構造の解析を行う。一般にC-metricは、一様加速運動をしている中心の外縦を表わすものと考えられている。同様な観察により、上のAK,AK,AU時空は、重力M、一様加速運動の２つのパラメータをもと、それぞれ重力、超重力、光速で運動しているBlack Holesを表わすものであることを示す。加速度の時間AはSchwarzschild時空であり、A、Aは、それら超重力、光速で超重暴力をもっているB,H、と見なせる。この場合において時の時空において、波面に対応するようなあることで即Spacelike面は、Aと重さCompactにならない。これはこれらの時空に静止ということを矛盾することを示す。一般のくち時空には、Killing Horizonと名づけめた。Schwarzchild面は、Frohoof(1980)によって言う。加速度の時間Aをもとを重さ的に線かっ重力時空にかかわれられる。他のくち時空は、その形が黒い障壁、これはくち時空は、その形を黒いひろがる。これらのことが実際を示す。注意すべきことは、加速度が大きくなった時にFrohoof(1980)の言うエネルギーの壁が「光の時間点の出現」などの効果で表われないことがである。むしろ加速が大きくなると、A、A時空は、加速を重力Aに近づけてゆき。加速パラメータに不自然な上限にない。