30p-PSB-8

Co$_3$O$_4$のNMR

神戸大学 A 神戸大学B 愛媛大学C 愛媛大学C

藤井利夫 A 佐野藤枝B 福山和雄D

我々は、スピネル型遷移金属カルコゲナイト系の電子相間の強さと、金属一価鈷体、磁性、超伝導などの相性に関わる系を研究している。Co$_3$O$_4$はCo$^{2+}$(Co^{3+})$_2$(O$_2^-$)$_4$の電子配置を持ち、$T_N=34$ KでAサイト（Co$^2+$）が反強磁性を示すことが知られている。今回、局在モーメントの極限近くに位置する物質として、このCo$_3$O$_4$をとり上げ、その電子物質をより詳細に調べる目的で、59CoのNMRおよびAFMRを行なった。

Fig.1にAおよびBサイトの59CoのK-χプロットを示す。
Aサイトの相位は今回新たに検出された信号である。この信号の超微細相互作用の大きさは、

- Aサイト : $H_{hf} = 21.1$ (kOe/μB)
- Bサイト : $H_{hf} = 6.6$ (kOe/μB)

となる。Fig.2は反強磁性状態（4.2 K）でのAサイトのAFMRである。ピク位置の共鳴周波数（55.5 MHz）で、K-χプロットより観測される63.5 MHz（3μB）によく一致した。学会では、A,BサイトのT_1の温度依存性についても報告する。

30p-PSB-9

反強磁性体MnF$_2$の非線形磁化

室蘭工業大学 白根 崇、佐藤雅治、尾藤 輝夫、近澤 進、水田 正一

Muranen Inst. of Tech., T. Shirane, M. Sato, T. Bito, S. Chikazawa and S. Nagata

非線形磁化率χ_2は、磁性相転移点近傍において特徴的な振舞を示し、相転移を研究する有効な方法と考えられる。χ_2の測定はスピングラスをはじめとするラマンシステムを対象に行われており、純粋な強磁性体や反強磁性体を示す場合の報告例は少ない。前回の研究までに、我々は典型的な強磁性体であるNiのキュリー点近傍におけるχ_2の振舞について報告してきた。

今回は、最も典型的な反強磁性体の一つであるMnF$_2$について、線形磁化率χ_0および非線形磁化率χ_2の測定を行ったので報告する。

測定は、相互誘導プロックを用いた交流磁化率測定装置により行った。図に示すようなMnF$_2$におけるχ_0およびχ_2の温度依存性を示す。

線形磁化率χ_0は反強磁性の特性の振舞を示し、文献値とよく一致する。

また、非線形磁化率χ_2はネル点において明確なギャップを示し、理論的な予想と定性的に一致する。ただし、温度の増加にしたがい、減少する振舞が予想されたが、現在この原因を調べている。

1) 日本物理学会‘93秋の分科会（講演番号15a-PS-54）白根他
2) S. Fonier: J. phys. radium 20 (1959) 336

--- 167 ---