1a-KB-1
非線型運動方程式 - 一般解法（非線型運動方程式の部分）

解図の運動方程式は、非線形・非線形系の解を合計の場合には
\[\dot{\theta} + \frac{\partial F}{\partial \theta} = 0 \]

となる。この方程式を解くために、まず、運動方程式が微分方程式で

\[\dot{\theta} + \frac{\partial F}{\partial \theta} = 0 \]

と書くことができる。ここで、\(F \) は、運動エネルギーを表す。

\[F = \frac{1}{2} \mu \dot{\theta}^2 + V(\theta) \]

ここで、\(\mu \) は、質量、\(V(\theta) \) は、ポテンシャルエネルギーを表す。

1a-KB-2
原始惑星による微惑星の捕獲過程（II）

近藤大工

問題の解法は前回報告で述べたもので、今回は省略する。微惑星の運動は制限二体問題に

原始惑星の回りをとり、原始大気によるガスの影響を考慮した運動方程式で記述できる。この

方程式は様々な初期条件の下で解く。前回は原始惑星の、ヒルサー

（原始惑星の重力圈）への入射条件を、入射角度については

に固定した時の様子を報告したが、その後入射角を変化させた場合について計算を行なった。又、角度変化を1度に

した場合の結果についてはもとめた。その結果、入射角度の

パラメータを増した場合でも全体の捕獲確率は、前回と大差な

が、捕獲される場の微惑星の軌道要素に関する詳細な

情報が得られた。更に原始惑星の原始大気を持つないとは設定

した場合（このときは問題は完全に制限二体問題となる）の直達

切突を行うにもかかわらず、その軌道要素を明らかにした。又、大

気をおう場合と比較するも、右図は微惑星の質量(m)に対

する捕獲確率の変化を示す。

参考文献