Effect of antidepressants on cytochrome P450 (CYP) 2D6-mediated dopamine formation from \(p \)-tyramine

Toshiro Niwa\(^1\), Mayumi Yanai\(^1\), Shizuya Sugimoto\(^1\), Marina Shizuku\(^1\)

\(^1\)Sch. Pharm., Shujitsu Univ.

[Purpose] CYP2D catalyze dopamine formation from \(p \) and \(m \)-tyramine in the brain, and human CYP2D6 is polymorphic. Imipramine, a tricyclic antidepressant, and fluvoxamine, an SSRI, are CYP2D6 inhibitors. Dopamine formation from \(p \)-tyramine mediated by CYP2D6 variants, CYP2D6.2 and CYP2D6.10 was compared, and the effect of genetic polymorphism on the inhibitory effects of antidepressants was investigated.

[Methods] CYP2D6.1, CYP2D6.2, and CYP2D6.10 expressed in recombinant *Escherichia coli* were used. Dopamine formation from \(p \)-tyramine in the presence of antidepressants such as imipramine, desipramine, fluvoxamine, fluoxetine, and paroxetine was determined by HPLC.

[Results] CYP2D6.10 had higher Michaelis constants of dopamine formation than CYP2D6.1 and CYP2D6.2. Inhibition constant of imipramine and desipramine against CYP2D6.10 were higher than that against CYP2D6.1. Fluoxetine and paroxetine inhibited CYP2D6.1-mediated dopamine formation. The maximal velocity for all CYP2D6 variants gradually increased with increasing fluvoxamine concentrations.

[Conclusions] CYP2D6 polymorphism might affect the inhibitory effect of antidepressants on dopamine formation in the brain.