The effect of σ_1R agonist/wildtype σ_1R on abnormal insoluble feature and toxicity of σ_1R ALS mutant (E102Q)

Yasuharu Shinoda, Yudai Haga, Koichiro Akagawa, Kohji Fukunaga

Mutations in sigma-1 receptor (σ_1R) gene are found in ALS. The σ_1R forms oligomers that are regulated by its ligands. However, little is known about the effect of mutations. Here, we transfected motor neuronal NSC-34 cells with σ_1R-mCherry (mCh), σ_1R^{E102Q}-mCh or untagged forms to assess detergent solubility and subcellular distribution by immunostaining and FRAP. The oligomeric state was assessed using crosslinker. Wildtype σ_1Rs were soluble to detergents, but the mutants were enriched in the insoluble fraction. In the soluble fraction, distribution of mutants appeared in higher sucrose density fractions. Mutants formed aggregates that were co-stained with p62, ubiquitin, and p-PERK, and which had lower recovery in FRAP. Acute treatment with σ_1R agonist SA4503 failed to improve recovery, prolonged treatment (48 h) reduced σ_1R^{E102Q}-mCh insolubility and inhibited apoptosis. While σ_1R-mCh formed monomers/dimers, σ_1R^{E102Q}-mCh also formed trimers/tetramers. SA4503 reduced the four types in the insoluble fraction but elevated monomers in the soluble fraction. Co-expression of σ_1R-mCh reduced σ_1R^{E102Q} insolubility. These results suggest that the agonist and wildtype σ_1R can modify the detergent insolubility, toxicity, and oligomeric states of σ_1R^{E102Q}. Pharmacological and genetic approaches may be promising to treat σ_1R-related ALS.