Whole-organ analysis of the tumor microenvironment by tissue clearing

Shimpei Kubota1, Kei Takahashi1, Tomoyuki Mano2, Katsuhiko Matsumoto3, Takahiro Katsumata2, Shoi Shi2, Kazuki Tainaka4, Hiroki Ueda2,3, Shogo Ehata1, Kohei Miyazono1

1Dept. Mol. Pathol., Univ. Tokyo, 2Dept. Sys. Pharm., Univ. Tokyo, 3RIKEN BDR, 4Brain Research Institute, Niigata University

Stochastic and proliferative events initiating from a single cell can disrupt homeostatic balance and lead to fatal disease such as cancer metastasis. To overcome metastasis, it is necessary to detect and quantify sparsely-distributed metastatic cells throughout the body in the early stages. Here we demonstrate that CUBIC (clear, unobstructed brain/body imaging cocktails and computational analysis)-based cancer (CUBIC-Cancer) analysis with a refractive-indices (RI) optimized protocol enables comprehensive cancer cell profiling in whole body and organs. CUBIC-Cancer analysis is applicable to a dozen mouse models using several cancer cells and spatio-temporal quantification of metastatic cancer progression at single-cell resolution. CUBIC-Cancer analysis is applicable to profiling of the remodeling of the tumor microenvironment. The scalable analytical pipeline with these three modalities would contribute to overcome incurable metastatic diseases.