Development of transrepression-selective liver X receptor (LXR) ligands

Sayaka Nomura1,2, Kaori Endo-Umeda3, Makoto Makishima3, Yuichi Hashimoto2, Toshiaki Ishizuka1, Minoru Ishikawa2

1Pharmacology, National Defense Medical College, Japan, 2The Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan, 3Nihon University School of Medicine, Japan

[BACKGROUND] Liver X receptors (LXRs) are members of the nuclear receptor superfamily with two subtypes, LXR alpha and LXR beta. Oxysterols are physiological LXR agonists, and induce transcription of target genes through a mechanism called transactivation, resulting in prevention of cholesterol accumulation but in induction of hypertriglyceridemia. On the other hands, LXR activation also suppresses expression of genes, such as interleukin-6 (Il-6) and Il-1beta, a mechanism called transrepression. LXR ligands possessing transrepression activity might be anti-inflammatory drugs, but their transactivation activity would cause the potential adverse effect hypertriglyceridemia. We have developed transrepression-selective LXR ligands. Recently, LXR activation has been suggested as a potential therapeutic target in the treatment of cardiovascular disease via endothelial regeneration. We determined whether the transrepression-selective LXR ligands promote the regenerative activity.

[METHODS] LXR agonistic and antagonistic activities were measured with a mammalian two-hybrid luciferase reporter gene assay using GAL4-human LXR chimeric receptor. Transrepression activity was measured with ELISA assessing repressing effect on LPS-induced IL-6 expression. Gene expression and direct LXR interaction were analyzed with reverse transcription-PCR and TR-FRET, respectively. In addition, we investigated the effect of the transrepression-selective LXR ligands on differentiation of human induced pluripotent stem cells-derived endodermal progenitor cells (hEPC) into CDX2-positive intestinal epithelial cells.

[RESULTS] We found some styrylphenyl phthalimides having LXR transrepression activity, and the structural modification led to a series of compounds possessing potent transrepression without transactivation in reporter gene assays. In gene expression analysis, the compounds didn’t induce expression of the LXR target gene ABCA1 or SREBP-1c in cells. TR-FRET binding assay indicated that they bind directly to LXR. Interestingly, they could promote intestinal differentiation of hEPC, although the underlying mechanism remains unknown.

[CONCLUSIONS] We successfully developed transrepression-selective LXR ligands that have anti-inflammatory activity and can promote intestinal regeneration. These compounds may be promising drugs for the treatment of inflammatory bowel diseases.