Influence of Plantar Hardness Discrimination Training on Center-of-Gravity Sway while Standing on One Leg: a Randomized Controlled Trial

HIDEKI NAKANO, RPT, MS1,2), KEN TA MIKI, RPT3), HIROYUKI FUJITA, RPT, MS2), SEIGOU KAWAMI, RPT3), SHU MORIOKA, RPT, PhD3)

1) Neurocognitive Rehabilitation Center, Setsunan General Hospital: 1–10 Yanagimachi, Kadoma-shi, Osaka, 571-0041, Japan. TEL: +81 6-6909-0300, FAX: +81 6-6906-0897, E-mail: cognitiveneuroscience426@yahoo.co.jp
2) Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University
3) Department of Rehabilitation, Higashi Osaka Yamaji Hospital

Abstract. [Purpose] We investigated the influence of plantar hardness discrimination training on center-of-gravity sway while standing on one-leg. [Subjects] Twenty healthy adult volunteers were randomly divided into intervention (n = 10) and control groups (n = 10). [Methods] The intervention group subjects carried out 10-day plantar hardness discrimination studies on sponges with 5 different levels of hardness. The control group underwent the same training except that they were not instructed to discriminate sponge hardness. Center-of-gravity (COG) sway while standing on one-leg with the eyes open or closed was measured before and after the training. Statistical analyses were performed the COG path length, enveloped area and rectangular area values. [Results] The number of correct answers for hardness discrimination significantly increased with the number of training days. There were significant reductions in the COG path length, enveloped area and rectangular area values after training in the intervention group compared to their respective values prior to training. In contrast, the control group showed no significant changes in these 3 parameters. [Conclusion] Our results suggest that the ability of healthy individuals to regulate center-of-gravity sway while standing on one-leg improved with enhancement of plantar perceptual ability through hardness discrimination training.

Key words: Discrimination training, One-leg standing, Center-of-gravity sway

INTRODUCTION

Centripetal information from the visual, somatosensory, and vestibular labyrinth pathways plays a crucial role in posture control, and individuals integrate this information to maintain an upright posture1). It was reported that only the somatosensory labyrinth pathway of the plantar surface that comes into sustained contact with the floor participates in posture control2–6). Okubo et al. reported that center-of-gravity sway decreased significantly after subjects stood on shotgun pellets spread on the floor7). In addition, Rogers et al. found that center-of-gravity sway decreased significantly after subjects stood on a rubber mat8). These studies indicate that posture control is improved by an increase in sensory input to the plantar surface. In contrast, it has been reported that posture control improves through intervention not only at the sensory level but also at the perception level9–11). Morioka et al. reported that the center-of-gravity sway and the functional reach test of healthy adults improved significantly with plantar hardness discrimination training9). In addition, it was reported that the same training improves posture control in the elderly and hemiplegic patients following stroke10,11). These findings indicate that an improvement in the ability to perceive sensory information input from the plantar surface plays a crucial role in the improvement of posture control.

The above-mentioned studies demonstrate that improvement in the plantar surface’s perceptual ability plays a crucial role in posture control while standing on two-legs. However, they did not demonstrate the influence of improved plantar perceptual ability on center-of-gravity sway while standing on one-leg. Standing on one-leg is a test that is simple and easy to carry out, does not require special equipment, and is frequently used in physical rehabilitation as an equilibrium function test for patients and the elderly12). It is also reported that center-of-gravity sway while standing on one-leg is related to the risk of falls among the elderly13). Therefore, it is necessary to demonstrate that the influence of plantar hardness discrimination training on center-of-gravity sway while standing on one-leg can be applied to physical rehabilitation.

Thus, this study aimed to investigate the influence of plantar perceptual ability improvement through hardness discrimination training on center-of-gravity sway while standing on one-leg.
SUBJECTS AND METHODS

Twenty healthy adult volunteers aged 22–29 years, participated in this study. Subjects were excluded if they had a chronic (orthopedic, neurological, or psychiatric) disease that might influence the results. The study protocol was explained to each subject who subsequently provided their informed consent. The research ethics committee of Kio University approved this study.

The subjects were randomly divided into intervention (n=10) and control groups (n=10) by a random number generation program (RAND function; Microsoft Office Excel 2007). The information is detailed in Table 1.

The intervention group carried out plantar discrimination training with sponges of different hardness that were set up on the floor9–11). The sponges had 5 different levels of hardness although their surface material and shape were identical (INOAC Co.). During the discrimination training subjects had their eyes closed and were in a sitting position. The training was carried out in pairs comprising an assistant and a subject. The assistant set up the sponge on the floor, and the subject’s foot was placed on the sponge. Then, the subject moved the ankle joint in plantarflexion and dorsiflexion so that the plantar surface remained on the sponge, and was asked to discriminate sponge hardness. Initially, the subjects were asked to memorize hardness in sets of 5 by discriminating the hardness in ascending (from sponge 1 to 5) and descending (from sponge 5 to 1) orders (verbal feedback was provided to enable memorization of sponge hardness by the assistant). After memorization, the subject performed 10 sets of hardness discriminations based on a random table created by a random number generation program (RAND function; Microsoft Office Excel 2007) and was thereafter instructed to determine levels of hardness (without verbal feedback in this instance). The number of correct answers in the random table was designated as the assessment of perceptual ability. The table was formulated so that each of the 5 hardness-graded sponges was included twice in the 10 sets that comprised the hardness discrimination training. The control group underwent the same training except that they were not instructed to perform hardness discrimination. This training was carried out over a 2-week period for 10 days.

The center-of-gravity (COG) sway while standing on one-leg with eyes open or closed was measured before and after the 10-day training period. Statistical analyses were performed for COG path length (LNG, cm), enveloped area (ENV-AREA, cm²) and rectangular area (REC-AREA, cm²). Center-of-gravity sway was measured by G-6100 (ANIMA CO.). The measurement cycle was 50 ms. The measurements of each parameter were performed for 30 s, 3 times, and the mean value of the 3 measurements was calculated. The subject was directed to gaze forward at a point 2 m away and at eye level during measurement.

The number of correct answers for the discrimination training was analyzed by one-way ANOVA with repeated measures. The repeated measures ANOVA was followed by Scheffe post-hoc comparisons to test for significant differences between each day. The paired t-test was used to analyze the difference between center-of-gravity sway values before and after the discrimination training. All statistical tests used a significance level of α = 0.05. In addition, we calculated intraclass correlation coefficients to determine the reproducibility of center-of-gravity sway measurements.

RESULTS

Table 2 shows the result of changes to the number of correct answers for the hardness discrimination training performed over 10 days. The number of correct answers for the hardness discrimination training increased significantly with the number of days (F = 12.3, p<0.01). Scheffe post-hoc comparisons revealed a statistical significance between day 1 and days 7–10 (p<0.01), day 2 and days 7–10 (p<0.01, p<0.05), day 3 and days 8–10 (p<0.01, p<0.05), and day 4 and day 10 (p<0.05).

Table 3 shows the result of comparison of center-of-gravity sway while standing on one-leg before and after the 10-day training. There were significant reductions in the length, enveloped area and rectangular area values of center-of-gravity sway with eyes open and closed after the 10-day training period compared to that before training in the intervention group (p<0.01, p<0.05, respectively). In contrast, there were no significant changes in these 3 parameters in the control group. The intraclass correlation coefficient showed “substantial” and “moderate”14).

DISCUSSION

When changes to the number of correct answers for the hardness discrimination training were evaluated, the number of correct answers was found to have increased significantly with the number of days. This results demonstrates that plantar perceptual ability improved with hardness discrimination training.

There were significant reductions in the length, enveloped area and rectangular area values of center-of-gravity sway while standing on one-leg with eyes open and closed after training compared to the measurements obtained before
training in the intervention group. In contrast, there were no
significant changes to these 3 parameters in the control
group.
Both groups received the same sensory information
through the plantar surface during the 10-day discrimination
training. However, training for the intervention group
included a perceptual process, in which sensory information
at the plantar surface was memorized and discriminated. It
was reported that motor skill ability improved along with
perceptual ability in motor learning theory\(^{15,16}\). This means
that the internal reference\(^{17}\) for motion is established by
improvement of perceptual ability, and requires execution
of a certain motion before it becomes able to correct
detailed motion by comparative matching of the internal
reference with actual motion and improving motor skill
ability. It was reported that center-of-gravity sway while
standing on one leg increased significantly compared to the
sway experienced while standing on two legs; centripetal
information from the visual, somatosensory, and vestibular
labyrinth pathways plays a crucial role in posture control
while standing on one leg\(^{18}\). Moreover, we have reported
that motor-related areas such as the premotor and
supplementary motor areas are involved in comparative
matching of somatosensory information and the production
of motor program activation during plantar hardness
discrimination training like that carried out in the present
study\(^{19}\). The results of the present study suggest that the
subject eventually becomes able to appropriately perceive
the plantar somatosensory information required for posture
control while standing on one leg by improving
somatosensory perception through hardness discrimination
training, and becomes able to correct, and therefore,
decrease center-of-gravity sway while standing on one-leg.
A limitation of the present study was that we could not
examine the maintenance of the improvement of center-of-
gravity sway while standing on one leg by hardness
discrimination training. In addition, difficulty, term, and
frequency of training corresponding to subjects’ abilities
were not evaluated. Moreover, we should not expect to
obtain a result similar to that of healthy adults if the elderly,
who experience failures of cognitive and somatosensory
functions, or hemiplegic patients following stroke, who
present sensory abnormality, are enrolled as subjects.
However, it was reported that the center-of-gravity sway
and functional reach test results of elderly and hemiplegic
patients were improved by enhancement of plantar
perceptual ability through hardness discrimination
training\(^{10,11}\). However, it will be necessary to show the
influence of plantar hardness discrimination training on
center-of-gravity sway while standing on one leg for the
elderly and hemiplegic patients before applying this
technique to physical rehabilitation. In the future, we would
like to develop this technique further to cater for the
rehabilitation of patients presenting with disequilibrium as
well as the elderly with experience of falls, and to examine
the cross-sectional and longitudinal effectiveness of such
intervention.

REFERENCES

1) Shumway-Cook A, Woollacott MH: Motor Control: Translating Research
into Clinical Practice (4th ed). Philadelphia: Lippincott Williams & Wilkins,
2) Kavounoudias A, Roll R, Roll JP: Foot sole and ankle muscle inputs
contribute jointly to human erect posture regulation. J Physiol, 2001, 532:

Table 2.
Changes to the number of correct answers given in hardness discrimination training performed over 10 days

<table>
<thead>
<tr>
<th>Day</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
<th>9th</th>
<th>10th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>5.20</td>
<td>5.30</td>
<td>5.80</td>
<td>6.30</td>
<td>6.80</td>
<td>7.20</td>
<td>7.70</td>
<td>8.10</td>
<td>8.40</td>
<td>8.60**</td>
</tr>
<tr>
<td>SD</td>
<td>1.48</td>
<td>1.34</td>
<td>1.23</td>
<td>1.16</td>
<td>1.14</td>
<td>1.03</td>
<td>1.06</td>
<td>0.99</td>
<td>0.97</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Max: 10, Min: 0, **: p<0.01.