Effects of the Horse Riding Simulator and Ball Exercises on Balance of the Elderly

SEONGGIL KIM, PT, MS1), GOON-CHANG YUK, PT, PhD2), HWANGBO GAK, PT, PhD3)*

1) Department of Rehabilitation Science, Graduate School, Daegu University, Republic of Korea
2) Department of Physical Therapy, Yeungnam University Hospital, Republic of Korea
3) Department of Physical Therapy, College of Rehabilitation Science, Daegu University: 15 Jilyang, Gyeongsan-si, Kyeongbuk 712-714, Republic of Korea

Abstract. [Purpose] The aim of this study was to examine the effects of horse riding exercise using a horse riding simulator (HRS) and a ball on static and dynamic balance of elderly people. [Methods] Thirty-two elderly people hospitalized in geriatric hospitals were randomly assigned to the HRS exercise group or the ball exercise groups, and they performed exercise for eight weeks. [Results] The length of postural sway during quite standing with and without eyes closed significantly decreased in both groups after the exercises and there was no significant difference between both groups in the Romberg test. In the functional reach test (FRT), there were significant increases in distance in both groups after the exercises, and the distance of the HRS exercise group was significantly greater than that of the ball exercise group. In the Timed Up & Go test (TUG) and Timed 10-meter walk test (10MWT), the time significantly decreased in both groups, and there was a more significant decrease in the HRS exercise group than in the ball exercise group. [Conclusion] The results of this study indicate that HRS and ball exercises may improve the balance and gait ability of elderly people hospitalized in nursing homes or geriatric hospitals.

Key words: Elderly, Balance, Hippotherapy

INTRODUCTION

Although the development of science and medicine has resulted in longer human lifespans, decreased balance control ability due to aging may degrade elderly people’s quality of life. Many aged people receive injuries such as fracture or brain damage, or even die in falls, and the risk of falls increases even for the uninjured because of the functional loss that occurs secondary to restricted activities, due to fear or concern about another fall1). Continuous exercise and environmental improvement are effective at increasing stability and reducing the risk of fall for elderly people2, 3). Diverse tools and programs are utilized in order to induce interest and motivate elderly people whose will to exercise has been degraded because of low activity levels and quality of life4, 5). In particular, activity levels of elderly people residing in hospitals or nursing homes, where they mostly stay indoors, are lower than those of elderly people who independently conduct daily living activities, and therefore specific exercise programs are necessary for such persons6). Research on the effects of fall prevention programs practiced by hospitals have reported that fall prevention programs in acute hospitals are effective at reducing falls6), and targeted multifaceted interventions are helpful for decreasing fall incidents in hospitals7). On the other hands, fall prevention programs for patients who stay in hospital for a short period have proven ineffective8).

Hippotherapy is drawing attention as a new treatment technique for improving balance and gait ability9–11). Movements of horse walking and the rhythms on horseback are similar to those of normal human gait. Feeling the rhythms on horseback gives comfort and pleasure and may be helpful for emotional stability. Therefore horse riding is employed in rehabilitation as well as in the fields of sports or recreation. Hippotherapy is known to be effective for improvement of subjects’ three-dimensional movements using the horse as a medium, as well as inducing responses to the horse’s movements, adjusting abnormal muscle tension, improving movement patterns, strengthening muscles, adjusting balance of the trunk, and enhancing gait12, 13).

Hippotherapy has been utilized to treat cerebral palsy13), multiple sclerosis14), spinal cord injury15), stroke10), and intellectual disabilities12). It is difficult to secure space for the therapy, and maintenance costs of horses and facilities are expensive. In addition, there is the risk of falls16). Therefore, horse riding equipment or tools imitating a horse’s movements that may be utilized indoors have been recently developed17, 18). A horse riding simulator or tools for hippotherapy could be employed for functional improvement and fall prevention of elderly people hospitalized in nursing homes or geriatric hospital, but relevant studies are insufficient. Therefore, this study examined the effects of horse riding exercise using a horse riding simulator (HRS) and a ball on static and dynamic balance of elderly people.
SUBJECTS AND METHODS

In this study, thirty-two elderly people hospitalized in geriatric hospitals were randomly assigned to the HRS exercise group or the ball exercise group and they performed exercise for eight weeks (Table 1). The criteria for the selection of the subjects were as follows: 65 years of age or older; no experience of a fall in the last one year; ability to walk more than 10 m without the help of gait aiding tools or other persons; no disease that might have affected the performance of exercise programs; and a score of 24 or higher on the Korean version of the mini-mental state examination (MMSE-K). The exclusion criteria were as follows: visual or auditory deficit or problems with the vestibular system; and inability to understand the content of the experiment. Information about this study was provided to all the subjects and they submitted their written consent to participate in this study. They were permitted to receive ordinary physical therapy during the study period. Ethical approval was obtained from the research ethics boards of Daegu University and local hospital.

Both the HRS exercise group and the ball exercise group performed horse riding exercise five times per week, 20 minutes each time.

The HRS (Honjin, Korea) was developed for indoor hippotherapy, and it imitates the three-dimensional movements (forward and backward, left and right, and up and down) of a live horse. Images of horse riding are displayed at the front for visual reality effects. The HRS group did warm-up exercise for 5 minutes prior to the horse riding exercise and a physical therapist continuously observed them during the 15-minute horse riding exercise for their safety. While the HRS was moving, the subjects maintained balance, and the speed of HRS was adjusted to be physical capabilities of each subject. The ball exercise was conducted in a similar manner to horse riding, with the subject riding on the ball. The exercise program consisted of pelvic tilt on the ball (forward and backward, side to side) and bounce on the ball (up and down). A research assistant demonstrated how to exercise on the ball, and after 5 minutes of warm-up exercise, the subjects performed the exercise for 15 minutes. The ball used in the study was the Professional Exercise Ball (Thera-Band, USA) and the diameter of the ball was 55 to 65 cm, so that the subject’s feet were comfortably placed on the ground when sitting on the ball.

The Romberg test was used to assess static balance. Table 1 shows the general characteristics of the subjects. The HRS exercise group had a higher mean age than the ball exercise group. There were no significant differences in height, weight, or gender between the two groups.

Table 1. General characteristics of subjects

<table>
<thead>
<tr>
<th></th>
<th>HRS exercise group</th>
<th>Ball exercise group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (M/F)</td>
<td>5/10</td>
<td>6/9</td>
</tr>
<tr>
<td>Age (year)</td>
<td>78.4 ± 6.2</td>
<td>78.5 ± 6.6</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>157.7 ± 5.5</td>
<td>157.6 ± 5.5</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>56.6 ± 8.6</td>
<td>56.1 ± 8.0</td>
</tr>
</tbody>
</table>

Mean ± SD, HRS: horse riding simulator

Results of the Romberg test (Eyes open/closed) for static balance are shown in Table 2. The mean length of postural sway was significantly shorter in both groups after exercise (p<0.05). In FRT, there was a significant increase in FRT distances in both the HRS exercise group and the ball exercise group (p<0.05), and the distance of the HRS exercise group was significantly greater than that of the ball exercise group after the exercise (p<0.05). In TUG and 10MWT, the times significantly decreased in both groups (p<0.05), and the HRS exercise groups time decreased significantly more than that of the ball exercise group (p<0.05) (Table 3).
Among diverse prevention methods for elderly people’s falls, hippotherapymay be a successful intervention strategy providing both safety and pleasure. This study examined the effects of horse riding exercise on static and dynamic balance, and gait ability of elderly people, and we verified that horse riding exercise using the HRS or the ball significantly improved their balance and gait.

Elderly people’s postural sway is larger than that of young people, and the range of postural sway of those who have several experiences of fall is larger than that of those who do not, and their balance responses are delayed. Therefore, they have difficulty in efficient postural adjustment and a higher risk of fall. In this study, the length of postural sway in standing with the eyes open and closed significantly decreased after 8 weeks of exercise. However, Araujo observed that the static balance of the elderly who live at home didn’t show significant difference after horse riding exercise. The differences between the findings of this study and previous reports may be due to the health status of the subjects. Those who participated in Araujo’s study were physically healthy and able to do ordinary activities at home, whereas those who participated in this study were hospitalized in geriatric hospitals and did relatively fewer activities. Kim reported that the elderly living at home had significantly higher scores of fitness and activities of daily living than those living in institutions. It is known that appropriate ankle and hip postural strategies are necessary for maintaining dynamic balance while standing, and an increase in FRT distance indicates improvement of dynamic balance ability in the standing position. In this study, FRT distance significantly increased in both the HRS and the ball exercise groups. A similar increase in FRT distance was found by Mitani, whose study reported posture and feedback and feedforward repeatedly for improving physiological, psychological functions and daily living activities of the elderly living in a city. Horse riding exercise not only elicits physical improvement, but also provides psychological pleasure and physical convenience. In the indoor HRS exercise that was conducted in this study, the elderly subjects were able to experience horse riding while looking at an image depicting a virtual reality; therefore, they were able to enjoyably participate. Simulated horse riding exercise on a ball may also be performed by elderly people at anytime without restriction of time or space, and has the merit that it may be performed by a group of people in hospitals or institutions. The limitations of this study were as follows. The number of subjects was small and was not representative of all elderly people. Also, follow-up evaluations of how long the improved balance and gait function of elderly patients staying in hospitals are maintained are necessary.

In an aging society, the number of ole people is continuously increasing, and the need of methods to prevent elderly people’s falls and enhance their balance ability has been made clear. Indoor horse riding exercise is a good method for improving elderly people’s balance ability and preventing falls.

ACKNOWLEDGEMENT

This work was supported by the Daegu University Research Grant, Grant No 20120330.

REFERENCES