Comparison of the electromyographic activity of the tibialis anterior and gastrocnemius in stroke patients and healthy subjects during squat exercise

Dong-Kyu Lee, PT, MSc1), Jun-Seok Kim, PT, BHSc2), Tae-Hoon Kim, OT, PhD3), Jae-Seop Oh, PT, PhD4)*

1) Department of Rehabilitation Science, Graduate School, Inje University, Republic of Korea
2) Department of Physical Therapy, Graduate School, Inje University, Republic of Korea
3) Department of Occupational Therapy, Dongseo University, Republic of Korea
4) Department of Physical Therapy, College of Biomedical Science and Engineering, Inje University: 607 Obang-dong, Gimhae-si, Gyeongsangnam-do 621-749, Republic of Korea

Abstract. [Purpose] The purpose of this study was to compare the EMG activity of the tibialis anterior (TA) and gastrocnemius (GCM) during the downward, maintenance, and upward phases of the squat exercise and during passive ankle dorsiflexion range of motion between stroke patients and healthy subjects. [Subjects] Fifteen hemiplegic (8 males, 7 females) and 15 healthy subjects (4 males, 11 females) volunteered for this study. [Methods] All subjects performed a double-leg squat exercise with the knee joint flexed to 30°. Surface electromyography (EMG) signals were recorded from the TA and GCM on the paretic or nondominant side. Passive ankle dorsiflexion range of motion (DF PROM) was measured using a goniometer in the knee-extended prone position. [Results] In the downward and maintenance phases, TA activity was significantly higher in stroke patients compared with healthy subjects. In the upward phase, GCM activity was significantly lower in stroke patients compared with healthy subjects. Ankle DF PROM was significantly lower in stroke patients compared with healthy subjects. [Conclusion] The observed EMG patterns should be taken into consideration to inform and enhance therapy for stroke patients.

Key words: EMG, Squat exercise, Stroke

INTRODUCTION

The majority of stroke patients experience muscle weakness and motor impairments, such as excessive contraction of muscles and reduced EMG burst. Poststroke physical capacity has been reported to be reduced by as much as 40% relative to the physical capacity of healthy persons, and this is due to loss of muscle strength and excessive activation, which consequently lead to functional deficits.

Functional recovery of the lower limbs is an important aspect of rehabilitation following stroke. Ng et al. reported that impaired ankle dorsiflexion strength is a crucial component in determining the Time Up and Go performance of individuals with spastic hemiplegia. EMG overactivity of the tibialis anterior (TA) leads to forefoot varus during the swing phase. The ankle plantar flexors are known to generate the majority of the power required for forward gait progression. Cooper et al. reported a strong relationship between ankle plantar flexor weakness (especially the gastrocnemius; GCM) and knee hyperextension during the mid-stance phase.

Clinically, the squat exercise is used to strengthen the lower limbs following stroke. The squat can be used in neurorehabilitation to safely retrain motor control during whole-body movements; it also involves bilateral movements. Weight-bearing exercises, especially squats, are effective in improving the function of lower extremity muscles because they involve both downward and upward movements of the body, with flexion and extension of the hip, knee, and ankle occurring simultaneously.

The primary purpose of this study was to compare the EMG activity in the TA and GCM during the downward, maintenance, and upward phases of the squat exercise in stroke patients compared with healthy subjects. A secondary objective was to investigate potential group differences in passive ankle dorsiflexion range of motion (DF PROM).

SUBJECTS AND METHODS

Fifteen hemiplegic patients (8 males, 7 females) were recruited from Dong-eui Medical Center, Busan, Republic of Korea. Their mean age was 59.8 ± 8.4 years, and their
mean height and weight were 165.1 ± 7.9 cm and 64.1 ± 7.1 kg, respectively. Four selection scales were used to assure homogeneity and minimize selection bias: subjects were eligible if they had a Berg Balance Scale (BBS) score between 35–45, a Korean-Modified Barthel Index (K-MBI) score between 60–85, a Modified Ashworth Scale (MAS), score between 1–2, and a Mini-Mental Status Examination-Korean version (MMSE-K) score above 24. The mean BBS, K-MBI, MAS, and MMSE-K scores of the patients were 41.7 ± 3.4, 80.4 ± 4.0, 1.5 ± 0.5, and 29.2 ± 1.4, respectively. Hemiplegia following their first unilateral stroke, which was required to have occurred more than 6 months previously, represented a further inclusion criterion. The mean poststroke interval of the patients was 10.6 ± 7.5 months. Fifteen healthy subjects (4 males, 11 females) were recruited from the community. Their mean age was 55.0 ± 9.9 years, and their mean height and weight were 162.7 ± 4.1 cm and 60.2 ± 6.3 kg, respectively. Healthy subjects were excluded if they reported any current neurological or musculoskeletal pain. Subjects with disabilities that might impair task performance of the squat exercise with knee flexion of 30° or with comprehension deficits were excluded. Prior to participation, all subjects read and signed an informed consent form approved by the Inje University Ethics Committee for Human Investigations.

To acquire EMG signals, surface EMG data were recorded using a Trigno wireless EMG system (Delsys, Inc., Boston, MA, USA). EMG data were collected from the TA and GCM on the paretic or nondominant side (preferred leg for kicking a ball). Electrodes were situated as follows: for the TA, one quarter to one third of the distance between the knee and the ankle, and for the GCM, immediately distal from the knee and 2 cm medial to the midline12). Data analysis was performed using the EMGworks software package (ver. 4.0; Delsys). The sampling rate for the EMG signal was set at 1,000 Hz; the band-pass filter was set between 20–450 Hz. Raw data from the TA and GCM muscles were transformed into root mean square (RMS) data. The mean RMS of the reference voluntary contraction (RVC) was calculated for each muscle when subjects were in a comfort-RMS of the reference voluntary contraction (RVC) was calculated for each muscle when subjects were in a comfort-RMS of the reference voluntary contraction (RVC) was calculated for each muscle when subjects were in a comfort-RMS of the reference voluntary contraction (RVC) was calculated for each muscle when subjects were in a comfort-RMS of the reference voluntary contraction (RVC) was calculated for each muscle when subjects were in a comfort.

EMG data were collected during a holding time of 5 s in the downward and maintenance phases of the squat. For data analysis purposes, we used 2 of the 3 s of the EMG data recorded for the TA and GCM muscles, excluding the initial 0.5 s and final 0.5 s.

The SPSS software package (ver. 18.0; SPSS Inc., Chicago, IL, USA) was used to compare the two groups’ EMG activity in the tested muscles during each squat phase together with their DF PROM. Group differences were assessed using independent t-tests, and significance was defined as p < 0.05.

RESULTS

In the downward and maintenance phases of the squat exercise, TA activity was significantly higher in the stroke patients compared with the healthy subjects (p < 0.05). The %RVC values of the TA during the downward phase of the squat in the stroke patients and healthy subjects, respectively, were 330.8 ± 181.9 and 207.8 ± 74.4. In the maintenance phase, the %RVC values of the TA in the stroke patients and healthy subjects, respectively, were 346.7 ± 229.7 and 199.8 ± 68.7. In the upward phase, the GCM activity was significantly lower in the stroke patients compared with the healthy subjects (p < 0.05). The %RVC values of the GCM in the stroke patients and healthy subjects, respectively, were 179.2 ± 63.8 and 300.3 ± 204.9 (Table 1).

Ankle DF PROM was significantly lower in the stroke patients compared with the healthy subjects (p < 0.05). The angles of ankle DF PROM in the stroke patients and healthy subjects were 179.2 ± 63.8 and 300.3 ± 204.9 (Table 1).

DISCUSSION

In this study, we compared the EMG activity of the TA and GCM in stroke patients and healthy subjects during the...
In conclusion, we demonstrated that paretic leg muscular activity in stroke patients differs from that of healthy subjects during the downward, maintenance, and upward phases of the squat exercise, with overactivity of the TA and decreased muscle activity of the GCM indicative of impairment. In addition, this study provided information pertaining to abnormalities in muscle activation following stroke, which could inform future rehabilitation programs. Increasing ankle DF PROM, without restricting ankle movement, could be used as a treatment to improve the performance of the squat exercise, given that quantification of motor deficits is essential to therapeutic approaches for stroke patients. Future investigations should aim to evaluate the effects of stretching on muscle activation in the context of ankle dorsiflexion.

REFERENCES

| Table 2. Differences in passive dorsiflexion range of motion between the two groups (°) |
|----------------------------------|------------------|-----------------|
| Stroke (n=15) | Healthy (n=15) |
| DF ROM 10.4 ± 1.8* | 20.2 ± 2.1 |

Data are expressed as the mean ± SD. DF ROM: differences in passive dorsiflexion range of motion between the two groups (°). *p < 0.05