Reliability of the modified Thomas test using a lumbo-plevic stabilization

GYOUNG-MO KIM, PT, MS¹, SUNG-MIN HA, PT, PhD²*

¹) Department of Physical Therapy, Division of Health Science, Baekseok University, Republic of Korea
²) Department of Physical Therapy, College of Health Science, Sangji University: 83 Sangjidae-gil, Won-ju, Gangwon-do 220-702, Republic of Korea

Abstract. [Purpose] The purpose of this study was to examine the test-retest reliability of the modified Thomas test using lumbo-pelvic stabilization. [Subjects] Thirteen subjects (male=10, female=3) with hip flexor tightness voluntarily participated in the study. [Methods] The participants underwent the modified Thomas test under three conditions: 1) the general modified Thomas test (GM), 2) active lumbo-pelvic stabilization (ALS), and 3) passive lumbo-pelvic stabilization (PLS). Intra-class correlation coefficients (ICC) were used to determine the test-retest reliability of the knee joint angle measurement under three conditions. The standard error of measurement (SEM) and minimal detectable difference (95% confidence interval) (MDD⁹⁵) were calculated for each measurement to assess absolute consistency. [Results] The ALS (ICC = 0.99) and PLS (ICC = 0.98) methods for the modified Thomas test were more reliable than GM method (ICC = 0.97). The MDD⁹⁵ score for the ALS method, 2.35 degrees, indicated that a real difference existed between two testing sessions compared with the scores for the PLS (3.70 degrees) and GM methods (4.17 degrees) [Conclusion] Lumbo-pelvic stabilization is one of the considerations for precise measurement and may help to minimize measurement error when evaluating hip flexor tightness using the modified Thomas test.

Key words: Lumbo-pelvic stabilization, Modified Thomas test

INTRODUCTION

The tightness of the hip flexor muscles limits hip hyper-extension in gait and may correlate with lumbar curvature, back pain, and knee dysfunction. The modified Thomas test is used to assess the flexibility of four different types of hip flexor muscle: the iliacus, psoas major, rectus femoris, and tensor fasciae latae (TFL)¹,². Though the modified Thomas test has been commonly used, it is still unclear which test can be used most reliably. The test may be affected by variations in the assessment skill of the examiners, the scoring method, the consistency of the assessment procedure, or the accuracy of the measurement equipment³⁴. To improve the clinical reliability of the modified Thomas test, various alternative methodological approaches have been proposed, for example, utilization of an inclinometer instead of a goniometer, the use of digital photography, comparison by goniometer, and a pass/fail scoring system¹⁵.⁷-

Lower limb movements result in forces on the vertebral column and can affect the lumbo-pelvic area⁸.⁹. When the hip flexor muscles are short, the lumbar vertebrae are put directly into more extended positions, and the degree of the anterior pelvic tilt is increased during the modified Thomas test. As a result, the reliability of the test outcome is limited¹⁰. Therefore, lumbo-pelvic stabilization is one of the imperative considerations for test-retest reliability. Although several studies have investigated the reliability of the modified Thomas test, whether lumbo-pelvic stabilization can influence the test-retest reliability has not yet been reported. The aim of our study was to examine the test-retest reliability of alternative methods of the modified Thomas test. Specifically, we investigated the effects of lumbar stabilization on the reliability of the modified Thomas test.

SUBJECTS AND METHODS

Thirteen subjects (male=10, female=3) with hip flexor tightness participated in the study. Subjects who met the inclusion criteria including no history of surgery or trauma to the hip, knee, or lower extremities voluntarily participated in this study. Prior to the study, the principal investigator explained all procedures in detail to the subjects. All subjects signed an informed consent form. A physical therapist with five years of orthopedic physical therapy experience measured the flexibility of the rectus femoris muscle of the dominant leg using the modified Thomas test. Examiner training sessions were conducted by the principal investigator to ensure familiarization and standardization of the pho-
Digital camera (DCR-SR68/S; Sony Corp., Tokyo, Japan). Prior to taking a photograph, the examiner used three adhesive circular red stickers (5 mm in diameter) to mark the fibula (most proximal aspect located 3–4 inches laterally to the tibial tuberosity), the greater trochanter of the femur (most superficial aspect located 4–6 inches inferiorly to the tibial tuberosity), the greater trochanter of the femur (most superficial aspect located 4–6 inches inferiorly to the midpoint of the iliac crest), and the lateral malleolus (most distal aspect) of the fibula. After attaching the three stickers, the examiners took photographs with the still image function.

Table 1. Mean and standard deviation for the knee joint angle according to the measurement methods (N = 13)

<table>
<thead>
<tr>
<th></th>
<th>Session 1</th>
<th>Session 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>General measurement</td>
<td>59.0°</td>
<td>59.0°</td>
</tr>
<tr>
<td>Active stabilization</td>
<td>50.8°</td>
<td>51.0°</td>
</tr>
<tr>
<td>Passive stabilization</td>
<td>50.6°</td>
<td>50.6°</td>
</tr>
</tbody>
</table>

Table 2. Inter-rater reliability of knee joint angle according to measurement methods (N = 13)

<table>
<thead>
<tr>
<th></th>
<th>ICC</th>
<th>SEMb</th>
<th>MDD95c</th>
</tr>
</thead>
<tbody>
<tr>
<td>General measurement</td>
<td>0.97 (0.91–0.99)</td>
<td>1.51</td>
<td>4.17</td>
</tr>
<tr>
<td>Active stabilization</td>
<td>0.99 (0.98–0.99)</td>
<td>0.85</td>
<td>2.35</td>
</tr>
<tr>
<td>Passive stabilization</td>
<td>0.98 (0.95–0.99)</td>
<td>1.34</td>
<td>3.70</td>
</tr>
</tbody>
</table>

DISCUSSION

The purpose of this study was to examine the test-retest reliability of lumbo-pelvic stabilization as an alternative methods for the modified Thomas test. Previous studies have indicated that many variables confound the clinical reliability of the modified Thomas test. For example, the results were influenced by examiner experience, patient variation both within and between assessment sessions, variation in patient positioning, and landmark identification and scoring procedures. To improve the precision of the measurement, the modified Thomas test using digital photography is cur-
rently being suggested17.

Our results show that use of ALS (ICC = 0.99) or PLS (ICC = 0.98) for the modified Thomas test was more reliable than use of GM (ICC = 0.97). Even when compared with data from the previous research of Gabbe et al.41 (ICC=0.69), Harvey17 (ICC=0.91–0.94) and Peeler and Leiter8 (ICC = 0.98), our results are more reliable. But, differences in testing procedure, scoring method, and sample size may explain the difference in the research results.

The MDD95 score for the ALS method, 2.35 degrees, indicated that a real difference existed between the two testing sessions compared with the PLS score (3.70) and GM score (4.17). Because the ALS method can be achieved by co-contraction of the local and global muscles and an increased amount of abdominal muscles activity, lumbo-pelvic motion was minimized, and this provided more stability in the difference in the research results. This result has important implications for clinical and research measurement. Lumbo-pelvic stabilization is one of the considerations for precise measurement and may help to minimize measurement error when evaluating hip flexor tightness using the modified Thomas test.

This study has several limitations. First, because of the small sample size of young and healthy subjects in this study, the generalizability of our results is limited. This additional research is needed to examine the reliability for different age and pathology groups. Second, not all measurement procedures were standardized. For example, PLS was accomplished by the examiner’s hand in this study. Despite these limitations, the results of our study suggest that lumbo-pelvic stabilization was effective for increasing the reliability and for minimization of measurement errors in the modified Thomas test. Further study is required for standardization of the lumbo-pelvic stabilization measurement procedure of the modified Thomas test.

REFERENCES

1) Clapis PA, Davis SM, Davis RO: Reliability of inclinometer and goniometric measurements of hip extension flexibility using the modified Thomas test. Physiotherapy Theory Pract, 2008, 24: 135–141. [Medline] [CrossRef]

3) Peeler JD, Anderson JE: Reliability of the Thomas test for assessing range of motion about the hip. Phys Ther Sport, 2007, 8: 14–21. [CrossRef]

