Relationship between the First Ovulation within Three Weeks Postpartum and Subsequent Ovarian Cycles and Fertility in High Producing Dairy Cows

Chiho KAWASHIMA1), Etsushi KANEKO1), Carlos AMAYA MONTOYA2), Motozumi MATSUI2), Norio YAMAGISHI3)#, Nobuyoshi MATSUNAGA4), Mitsuo ISHII3), Katsuya KIDA5), Yoh-Ichi MIYAKE2) and Akio MIYAMOTO1)

1)Graduate School of Animal and Food Hygiene, 2)Department of Clinical Veterinary Science, 3)Research Center for Animal Hygiene and Food Safety, 4)Department of Agricultural and Life Science, 5)Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
#Present address: Research Unit for Diagnosis and Treatment of Food Animal Diseases, Department of Veterinary Clinical Medicine, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan

Abstract. The aim of this study was to investigate the relationship between the first ovulation within 3 weeks postpartum and subsequent ovarian cycles and fertility in high producing dairy cattle in Hokkaido, Japan. In Experiment 1, 110 cows (44 primiparous and 66 multiparous) were used to determine the effects of the first ovulation within 3 weeks postpartum on subsequent ovarian cycles. Milk samples were collected twice weekly from 7 to 100 days postpartum. The first ovulation was identified by an increase in milk progesterone (P4) to more than 1 ng/ml within 3 weeks postpartum. The numbers of cows showing ovulation and anovulation within 3 weeks postpartum were 31 (70.5%) and 13 (29.5%) in the primiparous cows and 35 (53.0%) and 31 (47.0%) in the multiparous cows, respectively. The patterns of ovarian resumption after calving were classified into two types (normal ovarian cycles and abnormal ovarian cycles) on the basis of milk P4 concentrations. Initiation of normal ovarian function in cows ovulated within 3 weeks postpartum occurred earlier than in anovulated cows regardless of the number of calvings (primiparous, 27.8 days vs. 44.4 days; multiparous, 30.6 days vs. 55.7 days; P<0.01). Out of the multiparous cows that ovulated within 3 weeks postpartum, initiation of normal ovarian function followed by a normal luteal phase was earlier than when it was followed by an abnormal luteal phase (25.5 days vs. 40.4 days; P<0.05). Milk P4 concentrations after the first ovulation were lower than those after the second ovulation in both the primiparous and multiparous cows (P<0.05). In Experiment 2, 22 multiparous cows were used to determine the effects of the first ovulation within 3 weeks postpartum on subsequent fertility. Blood samples were collected once a week from 0 to 3 weeks postpartum. The interval from parturition to first service in ovulated cows was shorter than in anovulated cows (68.4 days vs. 94.8 days; P<0.05). The conception rate by 100 days after calving tended to be higher in ovulated cows than in anovulated cows (50.0% vs. 16.7%, P=0.09). In conclusion, our data strongly suggests that ovulation within 3 weeks postpartum is a crucial phenomenon for subsequent resumption of ovarian function and conception, and thus it can be used as an index of subsequent reproductive performance.

Key words: Dairy cow, First ovulation, Postpartum, Resumption of ovarian cycle

During the last few decades, milk production per cow has drastically increased due to improvement in management, nutrition, and genetic selection [1, 2], but the reproductive performance of dairy cows has conversely declined [1–4]. Several studies suggest that the negative effects of milk production on reproductive function can only be observed in high producing dairy cattle [2, 4–7]. One of the main reasons for this declining reproductive performance is a lower rate of increase in feed intake compared to the energy necessary for milk production. Namely, cows experience a serious period of negative energy balance during early lactation that is characterized by loss of body weight and mobilization of body fat stores [7, 8].

The resumption of ovarian activity plays a crucial role in subsequent fertility [9–11]. Recent studies have shown that the interval from calving to the first ovulation has become longer in high producing dairy cows [1, 4], and this can be explained in part by a larger negative energy balance [1, 8]. In most dairy cows, medium-sized follicles appear within 5 days after calving and large follicles appear within 10 days postpartum [12, 13]. Approximately half of all cows ovulate within 3 weeks postpartum [9, 10, 14], but in the other half, the dominant follicle of the first follicular wave regresses and the first ovulation occurs about 4 follicular waves later after calving [15, 16]. This difference in timing of the first ovulation is attributed to suppression of the luteinizing hormone (LH) pulse frequency by a negative energy balance during this period [7, 17]. Therefore, cows with only a slight negative energy balance may show a shorter interval from calving to first ovulation than those with a severe one.

It is now accepted that if uterine involution is achieved after calving, early resumption of ovarian cycles is directly related to higher fertility [9, 18, 19]. On the other hand, other studies have demonstrated that early ovulation before 3 weeks postpartum is associated with reduced pregnancy rates and a prolonged calving to conception interval in multiparous dairy cows [20], suggesting that early luteal activity may have a negative impact on involution of the uterus after calving [21, 22]. Thus, it is still controversial whether early resumption of ovarian cycles improves the fertility of dairy cows.

The aim of our study therefore was to investigate the relationship between the first ovulation within 3 weeks postpartum and subsequent ovarian cycles and fertility in high producing dairy cattle in Hokkaido, Japan.

Materials and Methods

All experimental procedures complied with the Guide for Care and Use of Agricultural Animals of Obihiro University.

Experiment 1

Animals: Exp. 1 was carried out at the Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine (Obihiro, Japan), using 110 lactating Holstein cows (44 primiparous and 66 multiparous) that calved between May 2001 and September 2003. The cows were housed in a free-stall barn throughout the year and offered a total mixed ration consisting of grass, corn silage, and concentrate. They also grazed during the period between May and October. Milking was performed twice daily (6:00 and 18:00). The average 305-day milk yield was approximately 8,600 kg, and the first month milk yield was 27.5 ± 0.7 kg/day in primiparous cows and 39.2 ± 0.9 kg/day in multiparous cows (P<0.01).

Milk sampling: Milk samples were collected twice weekly (Tuesday and Friday) after milking from day 7 to day 100 postpartum. After centrifugation at 3000 rpm for 45 min at 4 C, the fat layer was removed, and the skim milk samples were kept at –30 C until analysis for progesterone (P4) concentration.

Definition of ovarian activity after calving: When the P4 concentration in the skim milk from a cow increased to more than 1 ng/ml, the cow was confirmed as having returned to luteal activity [23]. The first ovulation was identified by luteal activity within 3 weeks after calving (Fig. 1-i). The first day when the P4 concentration in the skim milk from cow increased to more than 1 ng/ml was regarded as the day of initiation of normal ovarian function (Fig. 1-ii). A normal luteal phase was identified if the P4 concentrations in the skim milk samples retained levels of more than 1 ng/ml over a 7-day period (Fig. 1-iii). The patterns of ovarian resumption after calving were classified into two types (normal or abnormal cycle) on the basis of the
FIRST OVULATION IN POSTPARTUM DAIRY COWS

P4 profiles in skim milk samples as follows:

Normal cycles: when cows had an ovarian cycle followed by a luteal phase of normal length and this was repeated more than two times.

Abnormal cycles: when cows had an abnormal ovarian cycle, such as a prolonged luteal phase (ovarian cycles after 3 weeks postpartum with a long luteal phase ≥22 days), a short luteal phase (ovarian cycles after 3 weeks postpartum with a short luteal phase ≤4 days), and cessation of cyclicity (no luteal activity for at least 14 days between the first and second luteal phases).

Experiment 2

Animals: Exp. 2 was carried out using a commercial dairy herd in the Tokachi area of Hokkaido. Twenty-two lactating cows were used. They were housed in a tie-stall throughout the year and offered a total mixed ration consisting of grass silage. The average 305-day milk yield was 10,800 kg.

Reproductive management: The cows calved non-seasonally in both of the herds. Ovaries were scanned once a week by ultrasonography or rectal palpation beginning at 40 days postpartum. If there were apparent reproductive disorders (cystic follicles or anovulation), hormonal treatment using PGF2a and GnRH were applied after 60 days postpartum.

In the Exp. 2 herd, the cows were artificially inseminated at the observed estrus after 50 days postpartum. In addition to internal signs of estrus as detected by rectal palpation, cows with clear vaginal mucous discharge were considered to be in estrus. Conception was confirmed by ultrasonography or rectal palpation 40 and 60 days after each artificial insemination (AI). Cows that did not have a positive pregnancy diagnosis within the period of this study (180 days postpartum) were assumed to have conceived 21 days after their last unsuccessful service [20]. Therefore, this adjusted days open was used as a measure of final fertility.

Blood sampling: Blood samples were obtained by caudal venipuncture once a week between parturition and 3 weeks postpartum using sterile 10 ml tubes containing 200 µl of stabilizer solution (0.3 M EDTA, 1% acetylsalicylic acid, pH 7.4). The tubes were immediately chilled in ice water for 10 min and centrifuged at 3000 rpm for 20 min at 4 C. The plasma samples were kept at −30 C until analysis for P4 concentration.

Enzyme immunoassay for P4: Determination of P4 in skim milk and plasma was performed by enzyme immunoassay after extraction by diethyl ether as described previously [24], and the extraction efficiencies for skim milk and plasma were 88% and 93%, respectively.

Statistical analyses

Primiparous cows were analyzed separately from multiparous cows to avoid the potentially confounding influence of differences in nutrition and energy balance after parturition on reproductive performance in Exp. 1. The distribution of normal and abnormal ovarian cycles in primiparous and multiparous cows, ovulation within 3 weeks postpartum on repeated parturitions, and conception ratio were examined by chi-square test as an independency test. Other significant differences were analyzed by Student’s t test. Results were expressed as means ± standard error of the mean, with differences of P<0.05 considered significant.

Results

Experiment 1

Initiation of normal ovarian function after calving in primiparous cows (33.0 ± 2.6 days) was earlier than in multiparous cows (42.6 ± 2.9 days, P<0.05). The numbers of cows with ovulation and anovulation within 3 weeks postpartum were 31 (70.5%) and 13 (29.5%) in primiparous cows and 35 (53.0%) and 31 (47.0%) in multiparous cows, respectively (P=0.07, Table 1). In spite of ovulation...
or anovulation within 3 weeks postpartum, 59.1% of primiparous and 43.9% of multiparous cows had normal cycles. A few cows with their first ovulation within 3 weeks postpartum had a prolonged luteal phase, indicating a persistent corpus luteum, and the numbers of cows with a persistent corpus luteum in the ovulated and anovulated groups were identical (n=4 for both).

Characteristics of the luteal phase after ovulation within 3 weeks postpartum: In cows ovulated within 3 weeks postpartum, 16 out of 31 primiparous and 28 out of 35 multiparous cows had a short luteal phase (≤7 days) after the first ovulation. Milk P4 concentrations after the first ovulation were lower than those after the second ovulation in both the primiparous and multiparous cows (P<0.05, Fig. 2).

Relationship between the first ovulation within 3 weeks postpartum and subsequent ovarian function: In the multiparous cows, the number of animals with normal cycles followed by repetition of more than two luteal phases was larger in the group with ovulation within 3 weeks postpartum than in the group without ovulation. On the other hand, the number of animals with abnormal cycles was larger in the group without ovulation than in the group with ovulation (P<0.01, Table 1). Initiation of normal ovarian function in cows ovulated within 3 weeks postpartum was earlier than in anovulated cows despite the number of calvings (16.6 days earlier for the primiparous cows and 25.1 days earlier for the multiparous cows; P<0.01, Table 2). In the primiparous anovulated cows, initiation of normal ovarian function after calving followed by normal cycles was earlier than when followed by abnormal cycles (34.7 days vs. 56.5 days; P<0.05, Table 2), but there was no significant difference in the cows ovulated within 3 weeks postpartum. In the multiparous cows ovulated within 3 weeks postpartum, initiation of normal ovarian function occurred earlier in the cows with normal cycles than in those with abnormal cycles (25.5 days vs. 40.4 days; P<0.05, Table 2).

Ovulation within 3 weeks postpartum for two

<table>
<thead>
<tr>
<th>Table 1. Number of cows ovulated or anovulated within 3 weeks postpartum and resumption of normal or abnormal ovarian cycles in primiparous and multiparous cows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within 3 weeks postpartum</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>Primiparous cows</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Normal cycles followed by repetition of more than two luteal phases</td>
</tr>
<tr>
<td>Abnormal cycles†</td>
</tr>
<tr>
<td>Multiparous cows</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Normal cycles followed by repetition of more than two luteal phases</td>
</tr>
<tr>
<td>Abnormal cycles†</td>
</tr>
</tbody>
</table>

Values are mean ± SEM.

**P<0.01; ns, not significant by chi-square test.

†Cows having an abnormal cycle, such as a prolonged luteal phase (ovarian cycles after 3 weeks postpartum with a long luteal phase ≥22 days), short luteal phase (ovarian cycles after 3 weeks postpartum with a short luteal phase ≤4 days), or cessation of cyclicity (no luteal activity for at least 14 days between the first and second luteal phases).

Fig. 2. The highest skim milk progesterone concentrations during the luteal phase after 1st ovulation (i.e., ovulation within 3 weeks postpartum; solid column) and 2nd ovulation (open column). *P<0.05.
Table 2. Initiation of normal ovarian function in primiparous and multiparous cows showing ovulation or anovulation within 3 weeks postpartum

<table>
<thead>
<tr>
<th></th>
<th>Within 3 weeks postpartum</th>
<th>Significance of differences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ovulation</td>
<td>Anovulation</td>
</tr>
<tr>
<td>Primiparous cows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiation of normal ovarian cycles after calving (days)</td>
<td>27.8 ± 2.7 (n=31)</td>
<td>44.4 ± 4.5 (n=13)</td>
</tr>
<tr>
<td>Normal cycles followed by repetition of more than two luteal phases</td>
<td>24.6 ± 2.2 (n=19)</td>
<td>34.7 ± 2.8 (n=7)</td>
</tr>
<tr>
<td>Abnormal cycles†</td>
<td>32.3 ± 5.6 (n=12)</td>
<td>56.5 ± 7.3 (n=6)</td>
</tr>
<tr>
<td>Multiparous cows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiation of normal ovarian cycles after calving (days)</td>
<td>30.6 ± 3.1 (n=35)</td>
<td>55.7 ± 3.8 (n=31)</td>
</tr>
<tr>
<td>Normal cycles followed by repetition of more than two luteal phases</td>
<td>25.5 ± 1.6 (n=23)</td>
<td>47.2 ± 8.8 (n=6)</td>
</tr>
<tr>
<td>Abnormal cycles†</td>
<td>40.4 ± 7.9 (n=12)</td>
<td>57.2 ± 4.4 (n=25)</td>
</tr>
</tbody>
</table>

Values are mean ± SEM.
**P<0.01; *P<0.05; ns, not significant.
†Cows having an abnormal cycle, such as a prolonged luteal phase (ovarian cycles after 3 weeks postpartum with a long luteal phase ≥22 days), short luteal phase (ovarian cycles after 3 weeks postpartum with a short luteal phase ≤4 days), or cessation of cyclicity (no luteal activity for at least 14 days between the first and second luteal phases).

Table 3. Reproductive performance of multiparous cows

<table>
<thead>
<tr>
<th></th>
<th>Within 3 weeks postpartum</th>
<th>Significance of differences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ovulation (n=10)</td>
<td>Anovulation (n=12)</td>
</tr>
<tr>
<td>Days to first service</td>
<td>68.4 ± 8.2</td>
<td>94.8 ± 7.9</td>
</tr>
<tr>
<td>Conception by 100 d postpartum (%)</td>
<td>50.0</td>
<td>16.7</td>
</tr>
<tr>
<td>Conception by 180 d postpartum (%)</td>
<td>71.0</td>
<td>58.3</td>
</tr>
<tr>
<td>Adjusted days open1</td>
<td>110.0 ± 14.7</td>
<td>149.5 ± 11.7</td>
</tr>
</tbody>
</table>

Values are mean ± SEM.
*P<0.05; ns, not significant.
1Cows that did not have a positive pregnancy diagnosis within the period of this study (180 d postpartum) were assumed to have conceived 21 days after their last unsuccessful service.

consecutive lactation cycles: During the period of this study, 22 cows calved twice. In the two consecutive lactation cycles, 8 out of the 22 cows repeated ovulation within 3 weeks postpartum and 4 of the cows showed signs of anovulation. Consequently, there was no clear statistical tendency found in the distribution of occurrence for ovulation or anovulation within 3 weeks postpartum in the same animals with two consecutive lactation periods after application of the chi-square test.

Experiment 2

Out of 22 cows examined, 10 cows (45.6%) ovulated within 3 weeks postpartum. The interval from parturition to first service in the ovulated cows was earlier than in the anovulated cows (P<0.05, Table 3). The 100-day conception rate after calving in the ovulated cows tended to be higher than in the anovulated cows (P=0.09). However, there was no significant difference between the 2 groups in the ratio of conception by 180 days after calving. The adjusted days open was longer in the ovulated cows than in the anovulated cows (P<0.05, Table 3).

Discussion

The present study clearly indicates that initiation of normal ovarian function in both primiparous and multiparous high producing dairy cows ovulated within 3 weeks postpartum is earlier than in anovulated cows. The results further show that this first ovulation relates to the shorter interval from parturition to first service compared with the
long interval in anovulated cows, and consequently the ratio of conception by 100 days after calving tended to be higher in the ovulated cows.

The ratio of ovulation within 3 weeks postpartum in the primiparous cows tended to be higher than that of the multiparous cows (71% vs. 53%; P=0.07), and 60% of the cows resumed normal ovarian cycles despite ovulation or anovulation within 3 weeks postpartum. On the other hand, ovulation within 3 weeks postpartum in the multiparous cows induced a high ratio of subsequent ovarian cycles followed by a normal luteal phase repeated more than two times. In the present study, a relatively high proportion of primiparous cows had ovulation within 3 weeks postpartum compared with a previous study, which found the rate to be 53% [20]. Recent studies indicate that the LH pulse frequency [8] and plasma insulin-like growth factor-1 (IGF-1) level [8, 25] are closely related to the first ovulation during the postpartum period. Negative energy balance, which is caused by insufficient feed intake for milk production, reduces the LH pulse frequency [8, 17] and plasma IGF-1 level [26], results in delayed resumption of ovarian activity. The lower milk yield in the first month found in the primiparous cows in the present study may be one of the reasons for the high ratio of ovulation within 3 weeks postpartum and resumption of normal ovarian cycles. In addition, it is believed that the rate of dietary intake of the multiparous anovulated cows was too low for the energy necessary for milk production and that this affected ovulation within 3 weeks postpartum. Undoubtedly, further studies are needed to assess the relationships among milk production, metabolic and reproductive endocrinology, and resumption of ovarian function during the postpartum period.

There is adequate evidence indicating that first ovulation closely relates to earlier resumption of ovarian function, earlier first service, and conception in high producing dairy cows [9, 19]. On the other hand, other researchers have shown in multiparous cows that the ratio of animals having normal ovarian cycles among cows anovulated within 3 weeks postpartum (85%) was higher than in ovulated cows (68%) [20]. Our results in high producing dairy cows in Hokkaido confirmed the above results and showed that initiation of normal ovarian function in ovulated cows within 3 weeks postpartum is earlier than that in anovulated cows despite the number of calvings (P<0.01). In previous studies, it has been shown that earlier resumption of normal ovarian cycles is induced by reducing loss of body weight, increasing dry matter intake [18], and improving body condition score [27]. Therefore, it may be possible to use identification of ovulation within 3 weeks postpartum as an index for evaluation of nutritional status in relation to resumption of normal ovarian function.

In previous studies, it has been shown that the luteal phase after the first ovulation postpartum is abnormal and shorter than normal luteal phases [28, 29]. Similarly, our data showed that a short luteal phase (≤7 days) after the first ovulation within 3 weeks postpartum occurred in a half of the primiparous cows and 80% of the multiparous cows. In addition, it was also clear that the plasma P4 concentration after the first ovulation was lower compared to that after the second ovulation despite the number of calvings (P<0.05). It has been suggested that such a short period of elevated P4 concentrations during the postpartum period induces expression of a normal ovarian cycle [30, 31]. Therefore, the present study indicated that a short luteal phase with low P4 level after the first ovulation was sufficient for resumption of ovarian activity.

It has been shown that the plasma concentration of P4 after early first ovulation increases the occurrence of uterine infection and endometritis [21]. It is also known that endometritis prevents release of luteolytic PGF2a from the uterus [21] and often induces a persistent corpus luteum [32]. Our data showed that the number of cows with a persistent corpus luteum in the ovulated and anovulated groups were identical. Thus, the increase in P4 concentration after ovulation within 3 weeks postpartum had no negative effect on recovery of the uterus after calving in this herd.

During the period of this study, 22 cows calved twice and one cow showed no significant repeatability in ovulation or anovulation within 3 weeks postpartum over the course of two consecutive lactation cycles. Therefore, it is likely that the occurrence of ovulation or anovulation within 3 weeks postpartum does not depend on genetic factors.

The present results from the herd in Exp. 2 clearly showed that the occurrence of ovulation within 3 weeks postpartum positively affected the
interval from parturition to first service, the ratio of conception by 100 days after calvings, and the adjusted days open. Resumption of ovarian activity has been shown to play an important role in subsequent fertility in dairy cows [9, 11], and abnormal ovarian cycles before service have been shown to have negative effects on reproductive performance, including interval to first AI and pregnancy rate [33]. In addition, early estrous activity and higher numbers of estrous cycles before service may be indicators of greater restoration of reproductive efficiency [34]. Thus, first ovulation within 3 weeks postpartum is considered to have an impact on the recovery of ovarian function and high fertility, and this well supports the results of a previous study by other researchers [10]. In this context, monitoring of the first ovulation within 3 weeks postpartum using plasma or milk P4 could be used to estimate nutritional and reproductive status after calving and may be useful for management of nutrition and voluntary waiting period.

In conclusion, ovulation within 3 weeks postpartum could be an early index of recovery of normal ovarian function and subsequent reproductive performance in high producing dairy cows. The exact relationship between the occurrence of first ovulation, nutritional status, and fertility should be clarified by large-scale field and experimental studies in Hokkaido.

Acknowledgments

The authors thank Dr. K. Okuda, Okayama University, Japan, for P4 antiserum. This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and by the 21st Century COE Program (A-1) of the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Secure and Healthy Livestock Farming Project of the Ministry of Agriculture, Forestry and Fisheries of Japan, and the Japan Livestock Technology Association. C. Kawashima and E. Kaneko were supported by the COE Program.

References

15. McDougall S, Burke CR, MacMillan KL,

