Effect of Suckling on Embryo Production by Repeated Ovum Pick-Up Before and After Timed Artificial Insemination in Early Postpartum Japanese Black Cows

Toh-Ichi HIRATA1, Mai SATO1, Shu-Ichi SASAKI1, Osamu SASAKI1 and Takeshi OSAWA1

1) Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan

Abstract. We investigated whether suckling would affect embryo production of cows bred by timed artificial insemination (TAI) following an ovulation synchronization protocol combined with ovum pick-up and progesterone releasing intravaginal device (OPU-PRID-TAI protocol). The number of oocytes and transferable embryos collected by repeated OPU, performed before and after TAI, were recorded. A total of 14 Japanese Black cows were divided into weaned (n=7) and suckled groups (n=7). All 14 cows were treated with OPU on day 0 (the first day of treatment) and then with a PRID for 9 days. Prostaglandin F2α analog was administered on day 7, GnRH analog was administered on day 10 (36 h after removal of the PRID) and TAI was performed 12 h later. Ovulation was confirmed by palpation per rectum the following day. After TAI, additional OPU sessions were performed on days 18, 25 and 32. The synchronized ovulation rates of the weaned and suckled groups were 100 and 85.7%, and the conception rates were 71.4 and 42.9%, respectively. Immature oocytes were fertilized and cultured in vitro. The numbers of oocytes collected and blastocysts generated were similar between the individual OPU sessions in both groups. However, the total numbers of oocytes collected, cultured oocytes, cleavage embryos and blastocysts as well as the proportions of cleavage embryos and blastocysts to cultured oocytes were all significantly (P<0.05) greater in the weaned group compared with the suckled group. These results suggest that the OPU-PRID-TAI protocol has the potential to produce a significant number of good-quality embryos in vitro after repeated OPU in early postpartum weaned Japanese Black cows. To collect more oocytes and produce more embryos, we suggest that calves be removed from cows scheduled for treatment using this protocol.

Key words: Cow, Early postpartum, Japanese black, Ovum pick-up (OPU), Suckling, Timed artificial insemination (TAI)

Materials and Methods

Animals

A total of 14 Japanese Black cows kept at Omyojin Experimental Station, Iwate University, were used and divided into the following two groups: a weaned group (calves weaned at 7 days postpartum; n=7) and suckled group (calves allowed to suckle their dams freely until the end of the experiment; n=7). Each animal in...
the groups was healthy and housed in an individual pen under identical conditions, and was fed 2 kg daily of a mixed feed (at least 16% CP, at least 74% TDN) and orchard silage (77.8% DM, 14.0% CP, 58%TDN, 24.3%CF) ad libitum to meet the nutrient requirements of the Japanese Feeding Standard for Beef Cattle (Agriculture, Forestry and Fisheries Research Council Secretariat, 2000). The ages, numbers of parities, days postpartum and body weights (mean ± SD) of the weaned and suckled groups at the onset of the experiment were 37.0 ± 14.2 and 47.7 ± 22.6 months old, 1.7 ± 1.1 and 2.4 ± 1.6 parities, 28.3 ± 4.8 and 29.7 ± 5.0 days and 356.3 ± 36.5 and 371.9 ± 60.2 kg, respectively, and were not significantly different between the two groups. All procedures were carried out in accordance with a protocol approved by the Animal Care and Use Committee of Iwate University.

Timed AI protocol

The 14 cows were treated with OPU on day 0 (the first day of treatment) and were fitted with a PRID (containing 1.55 g of progesterone and an estradiol benzoate capsule containing 10 mg of estradiol benzoate; Aska Pharmaceutical, Tokyo, Japan) immediately after OPU. The device was left in the animals for 9 days, and 500 µg of cloprostenol, a prostaglandin F₂α analog (Estrumate; Nagase Medicals, Itami, Japan), was administered intramuscularly on day 7, two days before removal of the PRID. Fertirelin acetate (100 µg), a GnRH analog (Conceral; Nagase Medicals), was administered by intramuscular injection on day 10 (36 h after removal of the PRID), TAI was conducted 12 h later (day 11). Ovulation was confirmed by palpation per rectum the following day. After TAI, OPU was performed three times with an interval of 7 days (on days 18, 25 and 32).

Palpation per rectum was performed to monitor ovarian status. Blood samples were taken from the jugular vein into heparinized vacuum tubes on days 0, 7, 9, 10, 11, 12, 18, 25 and 32. Plasma was separated by centrifugation at 700 × g for 15 min. The plasma samples were then stored at −20°C until hormone assays were performed. Pregnancy diagnosis was made approximately 60 days after TAI by rectal palpation.

Hormone assays

Plasma concentrations of progesterone and estradiol-17β were determined by radioimmunoassay [15]. Ovine antisera raised against progesterone, GDN#337, and against estradiol-17β, GDN#244, were provided by Dr. Niswender GD (Colorado State University, Fort Collins, CO, USA). The sensitivity and intra-assay coefficients of variation were 0.04 ng/ml, 9.3% and 7.6% for progesterone and 0.2 pg/ml, 7.0% and 12.7% for estradiol-17β, respectively.

Ovum pick-up

All cows were restrained in standing stocks, sedated with 0.04 mg/kg BW xylazine (Celcactal; Bayer Medical, Tokyo, Japan) administered intramuscularly and treated with antispasmodic propranolol bromide (75 mg/head intravenously; Taiyo Yakuhin, Nagoya, Japan) in order to decrease rectal peristalsis. Immature oocytes of follicles 3 mm or greater in diameter were harvested from the ovaries using an ultrasound-guided transvaginal aspiration system (SSD-900 ultrasonograph, UST-M15-21079 probe; Aloka, Tokyo, Japan) equipped with disposable 17-G single-lumen sterile needles (COVA needle; Misawa Medical, Tokyo, Japan) using 70 to 80 mmHg of suction pressure. The immature oocytes were collected in 1% heparin (Novoheparin; Novo Industry, Bajsvead, Denmark) containing modified phosphate-buffered saline (m-PBS; Embryotec, Nippon-Zenyaku Kougyo, Kouryiamaya, Japan) and examined under a microscope. Collected oocytes without cumulus cells, those with expanded cumulus cells and those 100 µm or smaller in diameter were excluded, and the rest of the collected oocytes were cultured (cultured oocytes).

In vitro embryo production

In vitro embryo production (IVP) was performed according to procedures described previously [16]. Briefly, the oocytes were cultured in drops of 200 µl in vitro maturation medium (IVMD 101; Research Institute for the Functional Peptides, Yamagata, Japan) covered with 100 µl mineral oil for 20 h at 38.5°C in 5% CO₂ in a six-well culture plate (Repro-C-1 plate; Research Institute for the Functional Peptides). Frozen semen supplied by Livestock Improvement Association of Japan (Tokyo) was thawed at 37°C and washed twice, first in phosphate buffered solution and then in fertilization medium (IVF 100; Research Institute for the Functional Peptides), by centrifugation at 700 × g for 5 min. The final sperm pellet was resuspended in the same medium to adjust the concentration to 1.0 × 10⁷ spermatozoa/ml. For IVF, a 25 µl aliquot of spermatozoa suspension was combined with a 25 µl droplet of IVF 100 medium for 8 h. After in vitro fertilization, the presumptive zygotes were transferred to 200 µl of IVMD 101 for 16 h, demuded, transferred to 200 µl culture medium (IVD-101; Research Institute for the Functional Peptides) and cultured at 38.5°C in 5% O₂ and 5% CO₂ in N₂ for 8 days. The percentage of cleavage embryos was assessed 2 days after insemination, and blastocyst formation was assessed after 7 to 9 days of culture.

Statistical analyses

The ovulation synchronization and conception rates of the two groups were compared using Fisher’s exact probability test. Two-way repeated measures ANOVA was used to analyze time-course differences in the progesterone and estradiol-17β concentrations and the numbers of oocytes collected, cleavage embryos and blastocysts among the four OPU sessions between the weaned and suckled groups and between the subsequent pregnant and non-pregnant groups. Where appropriate, differences in hormone measurements and in OPU outcome were compared between the two groups by unpaired t-test. Comparisons of the proportions of cleavage oocytes and blastocysts to cultured oocytes were made between the weaned and suckled groups and between the pregnant and non-pregnant groups using the χ² test. Values are expressed as means ± SEM. Differences were considered to be significant at P<0.05. These analyses were performed using the StatView 4.0 software (Abacus Concepts, Berkeley, CA, USA).
Results

Ovarian dynamics and conception rate

Thirteen (92.9%) of the 14 animals had synchronized ovulation after GnRH injection and subsequently had a corpus luteum (CL). No significant difference was found in the ovulation synchronization rates between the weaned (100%; 7/7) and suckled (85.7%, 6/7) groups.

Eight of the 14 animals (57.1%) conceived with the OPU-PRID-TAI protocol. No significant difference was found in the conception rates between the weaned (71.4%) and suckled (42.9%) groups.

OPU outcome

The numbers of oocytes collected and blastocysts generated were similar among the four OPU sessions in the weaned and suckled groups (Table 1).

The total numbers of oocytes collected (P<0.01), cultured oocytes (P<0.05), total numbers and proportions of cleavage embryos to cultured oocytes (P<0.05), numbers of blastocysts generated on day 7 from IVF (P<0.05), proportions of blastocysts on day 7 to cultured oocytes (P<0.01), total numbers of blastocysts on days 7–9 (P<0.05) and proportions of blastocysts on days 7–9 (P<0.01) of the four OPU sessions were significantly higher in the weaned group compared with the suckled group.

There was no significant difference in OPU outcome between subsequent pregnant and non-pregnant groups.

Hormonal profiles

The profiles of the progesterone and estradiol-17β concentrations in the weaned and suckled groups are summarized in Fig. 1. Two-way repeated measures ANOVA analysis revealed a significant difference in the progesterone profile between the weaned and suckled groups (P=0.03). There were tendencies for the progesterone concentrations of the weaned group on days 7 (P=0.07) and 25 (P=0.06) to be higher than those of the suckled group. There was no difference in the estradiol-17β profile between the weaned and suckled groups.

Table 1. Comparison of the ovum pick-up (OPU) results of the four sessions at different times before and after the OPU-PRID-Timed AI (TAI) protocol between the weaned and suckled Japanese Black cows

<table>
<thead>
<tr>
<th></th>
<th>Weaned (n=7)</th>
<th>Suckled (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of OPU sessions</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Oocytes collected from the 4 OPU sessions</td>
<td>494 (17.6 ± 11.1)**</td>
<td>301 (10.8 ± 6.7)**</td>
</tr>
<tr>
<td>Session 1 (Day 0)</td>
<td>142 (20.3 ± 12.8)</td>
<td>81 (11.6 ± 5.5)</td>
</tr>
<tr>
<td>Session 2 (7 days after TAI)</td>
<td>88 (12.6 ± 9.0)</td>
<td>83 (11.9 ± 4.2)</td>
</tr>
<tr>
<td>Session 3 (14 days after TAI)</td>
<td>139 (19.9 ± 13.7)</td>
<td>69 (9.9 ± 10.1)</td>
</tr>
<tr>
<td>Session 4 (21 days after TAI)</td>
<td>125 (17.9 ± 8.6)</td>
<td>68 (9.7 ± 7.0)</td>
</tr>
<tr>
<td>Cultured oocytes*</td>
<td>441 (15.8 ± 9.6)*</td>
<td>288 (10.3 ± 5.6)*</td>
</tr>
<tr>
<td>Cleavage embryos</td>
<td>241 (8.6 ± 7.2)*</td>
<td>132 (4.7 ± 4.0)*</td>
</tr>
<tr>
<td>Proportion of cleavage embryos to cultured oocytes (%)</td>
<td>54.6*</td>
<td>45.8*</td>
</tr>
<tr>
<td>Blastocysts generated (day 7 from IVF)</td>
<td>70 (2.5 ± 3.4)*</td>
<td>25 (0.9 ± 1.9)*</td>
</tr>
<tr>
<td>Proportion of blastocysts (day 7) to cultured oocytes (%)</td>
<td>15.0**</td>
<td>8.7**</td>
</tr>
<tr>
<td>Blastocysts generated (days 7–9 from IVF)</td>
<td>99 (3.5 ± 4.0)*</td>
<td>36 (1.3 ± 1.8)*</td>
</tr>
<tr>
<td>Proportion of blastocysts (day 7–9) to cultured oocytes (%)</td>
<td>22.4**</td>
<td>13.5**</td>
</tr>
<tr>
<td>Session 1 (Day 0)</td>
<td>19 (2.7 ± 3.5)</td>
<td>11 (1.6 ± 2.1)</td>
</tr>
<tr>
<td>Session 2 (7 days after TAI)</td>
<td>15 (2.1 ± 2.4)</td>
<td>4 (0.6 ± 0.8)</td>
</tr>
<tr>
<td>Session 3 (14 days after TAI)</td>
<td>38 (5.4 ± 5.8)</td>
<td>10 (1.4 ± 1.8)</td>
</tr>
<tr>
<td>Session 4 (21 days after TAI)</td>
<td>27 (3.9 ± 3.5)</td>
<td>11 (1.6 ± 2.6)</td>
</tr>
</tbody>
</table>

* and **: Significant differences between the two groups within the same row (P<0.05 and 0.01, respectively). *The average (± SD) per OPU session is shown in parentheses. *Day 0 = first day of the OPU-PRID-TAI protocol. *All collected oocytes but those without cumulus cells, those with expanded cumulus cells and those 100 mm or smaller in diameter. *Number of blastocysts generated (days 7–9 from IVF) from session 1.
Protocol with a high conception rate. A high number of oocytes in suckled early postpartum beef cows (around 30 days postpartum) respond to this TAI protocol, demonstrating a high conception rate in suckled early postpartum cows. Weaned animals. Our results suggest that the OPU-PRID-TAI protocol documented here can be used as a management tool to improve the reproductive performance and effectiveness of OPU before and after TAI in early postpartum suckled and weaned beef cows. We have shown that early postpartum beef cows (around 30 days postpartum) respond to this TAI protocol with a high conception rate. A high number of oocytes can be collected both before and after insemination, especially in weaned animals. Our results suggest that the OPU-PRID-TAI protocol is applicable to early postpartum beef cows and that successive OPU sessions during early pregnancy in animals bred by TAI does not impair maintenance of pregnancy. We also demonstrated a high conception rate in suckled early postpartum cows treated with a similar OPU-PRID-TAI protocol in our previous study [14]. In the present study, we used a protocol in which a PRID was inserted for 9 days, PGF_{2α} was administered two days before PRID removal and GnRH was administered 36 hours after PRID removal to minimize the risk of ovulation before GnRH administration. The applicability of the 36-h interval between CIDR removal and GnRH in a timed AI protocol for beef cattle has been demonstrated previously [17]. This protocol is designed such that the plasma estradiol-17β concentration at the time of GnRH injection in the cow is as high as that in the cow at estrus. However, the average value in this study was lower than that reported previously [18]. This result suggests that the 36-h interval between PRID removal and GnRH applied in this study was rather short and so the ovulatory follicle had not matured sufficiently by the time of GnRH injection.

The numbers of oocytes collected and blastocysts generated were similar among the four OPU sessions in the weaned and suckled groups. This result suggests that repeated OPU at intervals of 7 days in early pregnancy is applicable in producing a certain number of transferable embryos. However, an interval of 7 days between OPU sessions may not be optimal for production of the maximum number of embryos by repeated OPU because it may allow development of a dominant follicle that exerts a deleterious influence on oocytes from subordinate follicles [13]. It has been suggested that repeated OPU twice a week can lead to maximum production of culture-competent oocytes because performance of follicle aspiration frequently enough to induce a newly recruited cohort of follicles and to prevent development of a dominant follicle yields a higher number of harvestable follicles and oocytes [5, 13, 19–21]. Oocyte collection by OPU from pregnant cows is often reported, and this procedure has not been shown to cause pregnancy loss [9–11, 22]. It is well known that repeated OPU at short intervals is possible [10, 19, 23]. Ooe et al. [12] demonstrated that repeated OPU at 5-day intervals in conjunction with FSH treatment in cows that are 70 to 100 days pregnant is effective. Our results indicate that oocyte collection by three successive OPU sessions at 7-day intervals from cows that are 7 to 21 days pregnant is possible and not harmful to pregnancy. Conversely, no difference in OPU outcome was found between the subsequent pregnant and non-pregnant cows. Although a 7-day interval between the OPU sessions was chosen in this study for practical reasons to allow for farm visits on a constant day of the week, further research is necessary to clarify whether the effect of repeated OPU once a week is beneficial to embryo production without risking pregnancy in cows at a very early stage of pregnancy.

The total numbers of oocytes collected, cultured oocytes, cleavage embryos, blastocysts generated on day 7 and blastocysts on days 7–9 of the four OPU sessions were significantly higher in the weaned group compared with the suckled group. In addition, the proportions of cleavage embryos, blastocysts on day 7 and blastocysts on days 7–9 to cultured oocytes in the weaned group were significantly higher than those in the suckled group. These results indicate that oocytes collected from weaned cows may be superior not only in quantity, but also in quality compared with those collected from suckled cows. The reasons why the weaned cows had better OPU results may be explained by the fact that more of the

![Fig. 1. Profiles of the plasma progesterone (A) and estradiol-17β (B) concentrations (mean ± SEM) of the early postpartum Japanese Black cows treated with the OPU-PRID-TAI protocol in the weaned (n=7) and suckled groups (n=7). A significant difference (P=0.03) was found in the progesterone profile. No significant difference was found in the estradiol-17β profile. P=0.07 for a and P=0.06 for b for comparisons between the groups at the same time points. OPU: Ovum pick-up. PRID: placement of a progesterone-releasing intravaginal device for 9 days. PGF_{2α}: intramuscular injection of 500 μg of cloprostenol, a prostaglandin F_{2α} analog. GnRH: intramuscular injection of 100 μg of fertirelin acetate, a GnRH analog. AI: artificial insemination.](image-url)

The profiles of both progesterone and estradiol-17β did not differ between the subsequent pregnant and non-pregnant groups.

Discussion

The OPU-PRID-TAI protocol documented here can be used as a management tool to improve the reproductive performance and effectiveness of OPU before and after TAI in early postpartum suckled and weaned beef cows. We have shown that early postpartum beef cows (around 30 days postpartum) respond to this TAI protocol with a high conception rate. A high number of oocytes can be collected both before and after insemination, especially in weaned animals. Our results suggest that the OPU-PRID-TAI protocol is applicable to early postpartum beef cows and that successive OPU sessions during early pregnancy in animals bred by TAI does not impair maintenance of pregnancy. We also demonstrated a high conception rate in suckled early postpartum cows treated with a similar OPU-PRID-TAI protocol in our previous study [14]. In the present study, we used a protocol in which a PRID was inserted for 9 days, PGF_{2α} was administered two days before PRID removal and GnRH was administered 36 hours after PRID removal to minimize the risk of ovulation before GnRH administration. The applicability of the 36-h interval between CIDR removal and GnRH in a timed AI protocol for beef cattle has been demonstrated previously [17]. This protocol is designed such that the plasma estradiol-17β concentration at the time of GnRH injection in the cow is as high as that in the cow at estrus. However, the average value in this study was lower than that reported previously [18]. This result suggests that the 36-h interval between PRID removal and GnRH applied in this study was rather short and so the ovulatory follicle had not matured sufficiently by the time of GnRH injection.

The numbers of oocytes collected and blastocysts generated were similar among the four OPU sessions in the weaned and suckled groups. This result suggests that repeated OPU at intervals of 7 days in early pregnancy is applicable in producing a certain number of transferable embryos. However, an interval of 7 days between OPU sessions may not be optimal for production of the maximum number of embryos by repeated OPU because it may allow development of a dominant follicle that exerts a deleterious influence on oocytes from subordinate follicles [13]. It has been suggested that repeated OPU twice a week can lead to maximum production of culture-competent oocytes because performance of follicle aspiration frequently enough to induce a newly recruited cohort of follicles and to prevent development of a dominant follicle yields a higher number of harvestable follicles and oocytes [5, 13, 19–21]. Oocyte collection by OPU from pregnant cows is often reported, and this procedure has not been shown to cause pregnancy loss [9–11, 22]. It is well known that repeated OPU at short intervals is possible [10, 19, 23]. Ooe et al. [12] demonstrated that repeated OPU at 5-day intervals in conjunction with FSH treatment in cows that are 70 to 100 days pregnant is effective. Our results indicate that oocyte collection by three successive OPU sessions at 7-day intervals from cows that are 7 to 21 days pregnant is possible and not harmful to pregnancy. Conversely, no difference in OPU outcome was found between the subsequent pregnant and non-pregnant cows. Although a 7-day interval between the OPU sessions was chosen in this study for practical reasons to allow for farm visits on a constant day of the week, further research is necessary to clarify whether the effect of repeated OPU once a week is beneficial to embryo production without risking pregnancy in cows at a very early stage of pregnancy.

The total numbers of oocytes collected, cultured oocytes, cleavage embryos, blastocysts generated on day 7 and blastocysts on days 7–9 of the four OPU sessions were significantly higher in the weaned group compared with the suckled group. In addition, the proportions of cleavage embryos, blastocysts on day 7 and blastocysts on days 7–9 to cultured oocytes in the weaned group were significantly higher than those in the suckled group. These results indicate that oocytes collected from weaned cows may be superior not only in quantity, but also in quality compared with those collected from suckled cows. The reasons why the weaned cows had better OPU results may be explained by the fact that more of the
animals had resumed postpartum ovarian function and, therefore, had already commenced normal growth of a small follicle cohort. Ovarian cyclicity resumes around 14 to 21 days postpartum in weaned cows in contrast to 21 to 28 days postpartum in suckled cows [24]. It has also been shown that suckling delays postpartum ovarian resumption in Japanese Black cows [25]. Another explanation for why more culture-competent oocytes were collected in the weaned group might be that normal growth of follicles and oocytes requires normal gonadotropin secretion and that gonadotropin secretion is inhibited in early postpartum suckled beef cows [26–29]. Since normal follicular and oocyte growth is probably necessary for normal development of blastocysts in vitro, the effects of suckling on the plasma FSH and LH profiles and follicular profiles (number and size) around the time of OPU in Japanese Black cows should be clarified in future research.

The average numbers (± SD) of blastocysts produced from one session of OPU-IVP were 3.5 ± 4.0 and 1.3 ± 1.8 in the weaned and suckled groups, respectively. The market value of a transferable donor is more than 300 US dollars. Therefore, the difference in the weaned group might be that normal growth of follicles and oocytes had already commenced normal growth of a small follicle cohort. Ovarian cyclicity resumes around 14 to 21 days postpartum in Japanese Black cows. We expect to collect more oocytes and produce more blastocysts with improved viability after freezing and thawing. Cytotechnology, 1999; 35: 121–129.

Although further investigation is required concerning the effects of suckling on follicular growth, luteal function after induction of ovulation and the in vitro development of oocytes collected via OPU, removal of calves from their dams for 48 h appears to be effective when conducting a TAI protocol in early postpartum beef cows.

In conclusion, our results suggest that it is possible to produce a number of high quality embryos in vitro by repeated OPU and IVP following the OPU-PRID-TAI protocol in early postpartum Japanese Black cows. We expect to collect more oocytes and produce more embryos if calves are removed from cows scheduled to be treated using the OPU-PRID-TAI protocol.

Acknowledgements

We are grateful to Dr. Niswender GD (Colorado State University, Fort Collins, CO, USA) for providing the steroid hormone antisera. This research was supported in part by a Grant-in-Aid for Scientific Research (No. 19580367) to T. O. from the Japan Society for the Promotion of Science.

References

2. Fike KE, Day MI, Inskemez EK, Kinder JE, Lewis PE, Short RE, Hafs HD. Estrus and luteal function in suckled beef cows that were anestrous when treated with an intravaginal device containing progesterone with or without a subsequent injection of estradiol benzoate. J Anim Sci 1997; 75: 2099–2115.
19. Garcia A, Salahedine M. Effects of repeated ultrasound-guided transvaginal follicular aspiration on bovine oocyte recovery and subsequent follicular development. The-

