Acetylation Level of Histone H3 in Early Embryonic Stages Affects Subsequent Development of Miniature Pig Somatic Cell Nuclear Transfer Embryos

Ken-ichi YAMANAKA¹, Satoshi SUGIMURA², Takuya WAKAI³, Manabu KAWAHARA⁴ and Eimei SATO²

¹National Agricultural Research Center for Kyushu Okinawa Region (KONARC), Kumamoto 861-1192, ²Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan, ³Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA and ⁴Laboratory of Animal Resource Development, Faculty of Agriculture, Saga University, Saga 840-8502, Japan

Abstract. Successful cloning by somatic cell nuclear transfer (SCNT) requires a reprogramming process in which the epigenetic state of a differentiated donor nucleus must be converted into an embryonic totipotent state. However, this epigenetic reprogramming is incomplete in SCNT embryos, causing low production efficiency. Recently, it has been reported that trichostatin A (TSA), an inhibitor of histone deacetylase, potentially enhances cloning efficiency. The aim of the present study was to optimize the TSA treatment for miniature pig SCNT embryos and investigate the effect of the acetylation level of histone on developmental competence of SCNT embryos. In order to optimize the TSA treatment, we examined the developmental competence of SCNT embryos under various exposure times (0–50 h) and concentrations (0–500 nM). Treatment with 5 nM TSA for 15 and 20 h beginning at the start of activation significantly increased the blastocyst formation rate (34.6 and 32.4 ± 2.7 and 56.6 ± 2.7 %, respectively) as compared with the non-treated group (0 h). We then investigated the acetylation levels of histone H3 in SCNT embryos treated with or without TSA (TSA (+) or TSA (−)) as compared with in vitro-fertilized (IVF) embryos. The acetylation levels of the TSA (−) SCNT embryos at the pseudo-pronuclear and 2-cell stages were significantly lower than those of the IVF embryos at the same developmental stages. In contrast, the acetylation levels of the TSA (+) SCNT embryos were similar to those of the IVF embryos. There was no difference in the acetylation levels of all groups at the blastocyst stage. Our data therefore suggests that the acetylation level of histone H3 at the pseudo-pronuclear and 2-cell stages is positively correlated with subsequent development of SCNT embryos, which may be an important event for the vital development of SCNT embryos in miniature pigs.

Key words: Embryo development, Histone acetylation, Miniature pig, Nuclear transfer, Trichostatin A

Accepted for publication: July 29, 2009
Published online in J-STAGE: August 24, 2009
Correspondence: K Yamanaka (e-mail: kenichiy@affrc.go.jp)
most suitable TSA concentration and exposure time for miniature SCNT embryos, the preimplantation development of SCNT embryos treated with TSA (0–500 nM) for 0–20 h beginning at the start of activation was examined. Next, under the optimized TSA treatment, we investigated the pseudo-pronuclear formation rate of SCNT embryos during TSA treatment (0–20 h) to understand the relationship between nuclear state and the positive effect of TSA treatment on developmental competence. Finally, we measured the acetylation levels of histone H3 lysine 18 in in vitro-fertilized (IVF), non-treated (TSA (−)) and TSA-treated SCNT (TSA (+)) embryos at the pronuclear or pseudo-pronuclear, 2-cell and blastocyst stages. In this study, we improved the developmental competence of miniature pig SCNT embryos by optimizing the protocol for TSA treatment. Furthermore, we revealed the fluctuation in the acetylation level of histone H3 lysine 18 in miniature pig SCNT embryos treated with TSA. These results provide useful information for improvement of cloning efficiency and elucidation of the reprogramming mechanism in pigs.

Materials and Methods

Chemicals

All chemicals were purchased from Sigma-Aldrich Chemical (St. Louis, MO, USA), unless otherwise stated.

In vitro maturation of oocytes

Pig cumulus-oocyte complexes (COCs) were isolated as described by Yamanaka et al. [3]. In brief, COCs were aspirated from non-atretic ovarian follicles (3–5 mm in diameter) obtained from prepubertal gifts at a local slaughterhouse. After washing in PB1, about 50 COCs were cultured in a four-well multidish (Nunc, Roskilde, Denmark) containing 500 μl of bovine serum albumin (BSA)-free NCSU-23 medium for 44 h at 38.5°C in a humidified atmosphere of 5% CO2 in air. The culture medium used for the first 22 h of maturation contained 10 IU/ml of pregnant mare serum gonadotropin (PMSG; Serotropin, Teikoku Zoki, Tokyo, Japan), 10 IU/ml of human chorionic gonadotropin (hCG; Chugai, Suwa, Japan), 0.6 mM cysteine, 5 μg/ml of insulin (Gibco BRL Life Technologies, Grand Island, NY, USA), 20 μM β-mercaptoethanol, 1 mM of 2–0-dibutyryladenosine 3’,5’-cyclic monophosphate (dbcAMP) and 10% (v/v) porcine follicular fluid. For the subsequent 22 h, the COCs were cultured in the same medium without dbcAMP and hormonal supplementation. After cultivating the cells up to maturation, expanded cumulus cells were removed by vortexing in PB1 buffer containing 1 mg/ml of hyaluronidase. The oocytes were observed under a stereo microscope, and mature oocytes, that is, those containing the first polar body, were selected and used for production of SCNT embryos. The mature oocytes were placed in PB1 until use.

In vitro fertilization of porcine oocytes

After in vitro maturation, cumulus-free mature oocytes were washed 3 times with TU medium (113.1 mM NaCl, 3.0 mM KCl, 10.0 mM CaCl2·2H2O, 25.07 mM NaHCO3, 11.0 mM glucose, 5.0 mM Na-pyruvate, 2.0 mM caffeine-benzoate and 1 mg/ml BSA [23]), and 30–40 oocytes were transferred into 100-μl drops of TU medium. Cryopreserved semen was thawed, and the spermatozoa were washed 2 times by centrifugation (at 1000 × g for 4 min) in Dulbecco’s PBS (Nissui, Tokyo, Japan) supplemented with 1 mg/ml BSA. The spermatozoa were resuspended in the TU medium, and 20–30 μl of this suspension was added to a fertilization drop containing in vitro-matured oocytes to yield a final concentration of 7.5 × 105 cells/ml. Coincubation of oocytes with sperm was carried out for 6 h post-insemination. The oocytes were then washed 3 times, and 20–30 oocytes were cultured in 100-μl drops of modified porcine zygote medium (PZM)-5 [24, 25] for 6 days at 38.5°C in 5% CO2 in air. The rates of cleavage and blastocyst development were assessed on days 2 and 6 of in vitro culture, respectively.

Preparation of donor cells

Donor cells were obtained from miniature pig fetuses (Gottingen; Chugai, Suwa, Japan) collected from a pregnant gilt on the 56th day of pregnancy. The cells from a single fetus were thawed and cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 10% (v/v) fetal bovine serum (FBS) and were passaged 4–9 times. The cells were cultured for 1 week after confluence and then used as donor nuclei.

Nuclear transfer

The oocytes were stained with 5 mg/ml of Hoechst 33342 at 38.5°C for 5–10 min and manually enucleated in PB1 containing 7.5 mg/ml of cytochalasin D. Enucleation was performed by aspirating both the first polar body and adjacent cytoplasm using a beveled pipette driven by a piezo-actuated unit (Prime Tech, Ibaraki, Japan) and confirmed by visualizing the cytoplasm under ultraviolet (UV) light. A single donor cell was injected into the perivitelline space of each oocyte and electrically fused using two direct current pulses of 150 V/mm for 50 μsec in 280 mM of mannitol supplemented with 0.1 mM magnesium sulfate (MgSO4) and 0.01% (v/v) polyvinyl alcohol (PVA). The fused oocytes were cultured in modified PZM-5, which was obtained by adding 4 mg/ml of BSA instead of 3 mg/ml of PVA to PZM-5, for 3 h before activation. For activation, oocytes were incubated in 15 μM ionomycin for 20 min and then in 5 μg/ml of cycloheximide and 2.5 μg/ml of cytochalasin D for 5 h. We then cultured 20–30 embryos in 100 μl of modified PZM-5 separately under mineral oil for 6 days at 38.5°C in an atmosphere of 5% CO2 in air. The rates of cleavage and blastocyst formation were assessed on Days 2 and 6, respectively. At the end of the culture period, the number of nuclei in all blastocysts was counted under UV light after staining with 5 μg/ml of Hoechst 33342.

Trichostatin A treatment

Preparation and dilution of TSA stock solution was performed according to Kishigami et al. [21]. Briefly, TSA was dissolved in dimethyl sulfoxide (DMSO), and the concentrated stock solution was stored at –20°C until use. The TSA stock solutions were added to the activation or culture media at each concentration according to the experimental procedure. Three hours after fusion, reconstructed embryos were randomly distributed and transferred into 100-μl drops of modified PZM-5 supplemented with 15 μM ionomycin and different concentrations of TSA for 20 min; they were...
subsequently transferred into drops supplemented with 5 μg/ml of cycloheximide, 2.5 μg/ml of cytochalasin D and different concentrations of TSA for 5 h at 38.5°C in 5% CO₂ with maximum humidity. After repeated washing in modified PZM-5, the reconstructed embryos were further cultured in modified PZM-5 medium containing the same concentration of TSA as before, but without cycloheximide and cytochalasin D, for an additional 5–45 h; following this, the culture medium was changed to modified PZM-5 without TSA.

Assessment of the nuclear state of embryos

To assess the nuclear state, embryos were fixed for 48 h in 25% (v/v) acetic acid in ethanol at differing time points, 0, 5, 10, 15 and 20 h beginning at the start of the activation treatment, stained with 1% (w/v) orcein in 45% (v/v) acetic acid and then examined for pseudo-pronuclear formation under a phase-contrast microscope.

Confocal microscopic analysis of histone acetylation

An immunofluorescence analysis was performed to examine histone acetylation. Briefly, embryos were fixed in 4% (v/v) paraformaldehyde (PFA) for 2 h at room temperature. After fixation, the embryos were washed for 1 h in PBS with 0.1% (v/v) Tween-20 and then permeabilized with 0.5% (v/v) Triton X-100 in PBS for 30 min at 4°C. The embryos were then washed three times (10 min per wash) and blocked in PBS containing 2% (w/v) BSA. They were then incubated with acetyl-histone H3 lysine 18 primary antibody (rabbit polyclonal antibody against histone H3 acetyl lysine 18, 1:100 dilution; Cell Signaling Technology, Beverly, MA, USA) for 1 h at 37°C. After washing in PBS with 0.1% (v/v) Tween-20 for 3 h, the embryos were labeled with fluorescein isothiocyanate (FITC)-conjugated secondary antibodies (goat anti-rabbit IgG FITC-conjugated antibody, 1:200 dilution; Southern Biotech, Birmingham, AL, USA) for 30 min at 37°C. After washing three times in PBS, the DNA was counterstained with 10 μg/ml of propidium iodide (PI) for 30 min. The embryos were mounted on glass slides with a drop of mounting medium and examined with a Bio-Rad MRC-1024 confocal microscope (Hercules, CA, USA) equipped with a 40× objective. Images were obtained with the same exposure times and adjustments of the microscope. Fluorescence was measured by analysis of the embryo pictures with the LaserSharp Processing software (Bio-Rad, Hercules, CA, USA). The mean pixel intensity values were measured in five different random regions of each nucleoplasm excluding nucleolar regions. In IVF embryos at the pronuclear stage, the mean pixel intensity of propidium iodide was higher (P<0.05) in the medium treated with 5 nM TSA for 15–20 h compared with the group treated for 0 h (34.6±2.7 and 56.6±2.7, respectively; Table 1). Next, in order to determine the optimized TSA concentration in the treatment medium, SCNT embryos were cultured in modified PZM-5 supplemented with 0, 5, 50 or 500 nM TSA for 15 h (Table 2). The rates of blastocyst formation and mean cell numbers were significantly higher (P<0.05) in the groups treated for 15 and 20 h compared with the group treated for 0 h (34.6 and 32.4 vs. 18.2% and 57.0±2.7 and 56.6±2.7 vs. 43.5±2.1, respectively; Table 1). On the basis of these results, we determined the optimized conditions of TSA treatment; namely, treatment with 5 nM TSA for 15–20 h notably enhanced the developmental competence of SCNT embryos. Thus, the following experiments were performed using this optimized TSA treatment (concentration, 5 nM; exposure time, 15 h).

Results

Optimization of TSA treatment for miniature pig SCNT embryos

We examined the effect of TSA treatment on the in vitro development of SCNT embryos. For comparison of the exposure times of TSA treatment, SCNT embryos were cultured in modified PZM-5 supplemented with 5 nM TSA for 0, 5, 10, 15, 20 and 50 h from the start of activation (Table 1). The rates of blastocyst formation and mean cell numbers were significantly higher (P<0.05) in the groups treated for 15 and 20 h compared with the group treated for 0 h (34.6 and 32.4 vs. 18.2% and 57.0±2.7 and 56.6±2.7 vs. 43.5±2.1, respectively; Table 1). Next, in order to determine the optimized TSA concentration in the treatment medium, SCNT embryos were cultured in modified PZM-5 supplemented with 0, 5, 50 or 500 nM TSA for 15 h (Table 2). The rates of blastocyst formation and mean cell numbers were significantly higher (P<0.05) in the 5 nM treated group compared with the 0 nM group (35.4 vs. 17.0% and 56.7±3.2 vs. 41.4±2.6, respectively; Table 2). On the basis of these results, we determined the optimized conditions of TSA treatment; namely, treatment with 5 nM TSA for 15–20 h notably enhanced the developmental competence of SCNT embryos. Thus, the following experiments were performed using this optimized TSA treatment (concentration, 5 nM; exposure time, 15 h).
Duration of TSA treatment required for improving the development of SCNT embryos

As described above, we determined the optimized exposure time for TSA treatment, 15–20 h. Furthermore, to explore whether the state of the donor nucleus during TSA treatment is connected with the positive effect of TSA treatment on development of SCNT embryos, we observed pseudo-pronuclear formation in SCNT embryos at 0, 5, 10, 15 and 20 h after the start of activation (Fig. 1). The rate of embryos at the pseudo-pronuclear stage was 30.0 ± 5.5% at 5 h and reached the peak at between 10 and 15 h (74.7 ± 6.5 and 77.6 ± 4.8%). At 20 h, most SCNT embryos entered mitosis, and the rate of embryos at the pseudo-pronuclear stage was only 22.6 ± 4.3%. Hence, these results, together with the developmental data (Table 1), indicated that treating SCNT embryos with 5 nM TSA until the pseudo-pronuclear stage was beneficial to improvement of the developmental competence to the blastocyst stage.

Fluctuation in acetylation level of histone H3 lysine 18 in SCNT embryos treated with TSA during preimplantation embryogenesis

Next, we compared the acetylation levels of histone H3 lysine 18 in TSA (+) and TSA (–) SCNT embryos with those in IVF embryos at the pseudo-pronuclear or pronuclear, 2-cell and blastocyst stages. As shown in Fig. 2A and 2B, the acetylation levels of histone H3 lysine 18 in the TSA (–) SCNT embryos at the pseudo-pronuclear and 2-cell stages were apparently lower than those in the other embryos, the TSA (+) SCNT and IVF embryos. However, at the blastocyst stage, no difference in the histone H3 acetylation level was observed among the groups (Fig. 2C). This is in agreement with the results of the immunofluorescence analysis (Fig. 2D–F) and suggests that the histone H3 acetylation levels enhanced by TSA treatment at the pseudo-pronuclear and 2-cell stages are responsible for the improved of developmental competence of the SCNT embryos.

Discussion

Because of many similarities with humans, pig cloning by SCNT may also prove useful in many biomedical applications [26]. However, the production efficiency of normal offspring remains low. Particularly, in pigs, a large number of embryos with high quality is needed to produce cloned offspring, because pigs have a unique reproductive feature necessitating several embryos are needed to establish and maintain pregnancy [27, 28].

Table 1. Effect of TSA treatment time on in vitro development of SCNT embryos

<table>
<thead>
<tr>
<th>TSA treatment time (h)</th>
<th>No. of embryos</th>
<th>No. of ≥ 2-cell embryos (%)</th>
<th>No. of blastocysts (%)</th>
<th>No. of cells/blastocyst (mean ± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>165</td>
<td>112 (67.9)</td>
<td>30 (18.2)</td>
<td>43.5 ± 2.1*</td>
</tr>
<tr>
<td>5</td>
<td>129</td>
<td>96 (74.4)</td>
<td>24 (18.6)</td>
<td>43.3 ± 3.0*</td>
</tr>
<tr>
<td>10</td>
<td>76</td>
<td>54 (71.1)</td>
<td>16 (21.1)</td>
<td>47.8 ± 4.6**</td>
</tr>
<tr>
<td>15</td>
<td>104</td>
<td>83 (79.9)</td>
<td>36 (34.6)</td>
<td>57.0 ± 2.7*</td>
</tr>
<tr>
<td>20</td>
<td>139</td>
<td>103 (74.1)</td>
<td>45 (32.4)</td>
<td>56.6 ± 2.7*</td>
</tr>
<tr>
<td>50</td>
<td>86</td>
<td>65 (75.6)</td>
<td>23 (26.7)**</td>
<td>44.8 ± 3.4*</td>
</tr>
</tbody>
</table>

TSA, trichostatin A; SCNT, somatic cell nuclear transfer. * Values with different superscripts within each column are significantly different (P<0.05).

Table 2. Effect of TSA concentration on in vitro development of SCNT embryos

<table>
<thead>
<tr>
<th>TSA concentration (nM)</th>
<th>No. of embryos</th>
<th>No. of 2-cell embryos (%)</th>
<th>No. of blastocysts (%)</th>
<th>No. of cells/blastocyst (mean ± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>112</td>
<td>71 (63.4)</td>
<td>19 (17.0)</td>
<td>41.4 ± 2.6*</td>
</tr>
<tr>
<td>5</td>
<td>96</td>
<td>72 (75.0)</td>
<td>34 (35.4)</td>
<td>56.7 ± 3.2*</td>
</tr>
<tr>
<td>50</td>
<td>76</td>
<td>55 (72.4)</td>
<td>17 (22.4)**</td>
<td>44.2 ± 4.2*</td>
</tr>
<tr>
<td>500</td>
<td>104</td>
<td>76 (73.1)</td>
<td>24 (23.1)**</td>
<td>45.7 ± 2.9*</td>
</tr>
</tbody>
</table>

TSA, trichostatin A; SCNT, somatic cell nuclear transfer. * Values with different superscripts within each column are significantly different (P<0.05).
Fig. 2. Confocal micrographs and immunolabeling intensity (mean ± SE) of acetyl histone H3 lysine 18 in IVF and SCNT embryos at the pronuclear or pseudo-pronuclear (A and D), 2-cell (B and E) and blastocyst (C and F) stages. The embryos were labeled for acetyl histone H3 (lysine 18; green) and DNA (red). The merged images of labeled histone H3 and DNA appear yellow. Scale bars=30 μm. Labeling intensity was expressed relative to that of the IVF embryos (arbitrarily set as 100%). TSA (–), non-treated SCNT embryo; TSA (+), trichostatin A-treated SCNT embryo. At least 11 embryos per groups were analyzed in three replicates; a and b indicate values that are significantly different (P<0.05).
hand, Suzuki et al. [25] recently reported the production of piglets from in vitro produced blastocysts by non-surgical embryo transfer into surrogate mothers. Non-surgical embryo transfer is a more effective and economical method compared with surgical embryo transfer, which is mainly used for pigs. Therefore, if SCNT blastocysts with higher quality could be produced in vitro, it may also be possible to produce cloned piglets by non-surgical embryo transfer.

In the present study, to improve the developmental competence of miniature pig SCNT embryos, we determined the optimal conditions for TSA treatment and demonstrated that TSA treatment significantly increased acetylation of histone H3 in the early stages and the developmental ability of SCNT embryos. Furthermore, we demonstrated, for the first time, that the important factor for the developmental ability of SCNT embryos is the acetylation levels at the pseudo-pronuclear to 2-cell stages, not at the blastocyst stage. These findings indicate that a higher level of histone acetylation at the pseudo-pronuclear to 2-cell stages may promote reprogramming of the transferred donor nucleus and subsequently enhance the developmental competence of SCNT embryos.

In Experiment 1, we determined the optimal conditions for TSA treatment in miniature pig SCNT embryos. TSA (5, 50 and 500 nM) was used to treat miniature pig SCNT embryos for 5, 10, 15, 20 and 50 h from the start of activation; TSA treatment at 5 nM for 15 and 20 h from the start of activation significantly increased the blastocyst rate and mean cell number in SCNT embryos (Tables 1 and 2). This result is consistent with previous studies reporting improvement of developmental competence in SCNT embryos by TSA treatment [16, 21, 29]. In addition, because hyperacetylation of histones leads to active gene expression [13] and DNA replication [30], it may have contributed to increase in mean cell number in the present study. The optimal conditions determined in this study included a shorter exposure time and lower concentration of TSA compared with the previous studies [16, 31]. This difference might be due to the difference in nuclear transfer protocol and/or culture medium because previous studies have reported that the nuclear transfer protocol [32] and culture medium [33] affect the gene expression of embryos, including DNA methyltransferases, which are related to epigenetic modification. Thus, a difference in expression of epigenetic modification related genes might affect the histone acetylation status in NT embryos, causing a difference in the optimal treatment. Taken together, the optimal TSA treatment was effective for improvement of developmental competence in SCNT embryos.

In Experiment 2, to examine whether the nuclear state during TSA treatment is related to the positive effect of TSA treatment on development of SCNT embryos, we investigated the nuclear stage of SCNT embryos at 0, 5, 10, 15 and 20 h after the start of activation. Pseudo-pronuclear formation began to be observed at 5 h and reached the peak at 10–15 h; almost all embryos proceeded to mitosis at 20 h (Fig. 1). These results, together with the data from Experiment 1, indicate that it may be important to treat SCNT embryos with TSA at the pseudo-pronuclear stage in order to increase the developmental competence. After fertilization, the embryo immediately undergoes epigenetic reprogramming for development to term. For instance, the paternal genome undergoes rapid active demethylation within a few hours of fertilization [34]. Histone also undergoes reacetylation at the pronuclear stage following drastic deacetylation at meiotic metaphase [35, 36]. Moreover, a previous study suggested that major events of epigenetic reprogramming during the pronuclear stage are conserved among mammalian species [37]. These findings showed the importance of epigenetic reprogramming at an early stage for subsequent embryonic development. In fact, round spermatid-injected oocytes showed aberrant epigenetic reprogramming at the pronuclear stage, which causes lower developmental competence to term compared with spermatid-injected oocytes [38, 39]. These findings, combined with our data, suggest that TSA treatment might prevent the aberrant epigenetic reprogramming of the SCNT embryo at the early stages and increase the developmental competence of SCNT embryos.

Next, we investigated the acetylation level of histone H3 in SCNT embryos. Histone acetylation is one of the epigenetic markers that in donor cells [17, 18] and SCNT embryos [16, 29], affect the subsequent development of produced SCNT embryos. Therefore, we also analyzed the acetylation level of histone H3 lysine 18 as an indicator of epigenetic reprogramming; the acetylation levels of histone H3 lysine 18 in the TSA (+) group at the pseudo-pronuclear and 2-cell stages were significantly higher than those of the TSA (−) SCNT embryos but were similar to those of the IVF embryos (Fig. 2). Although the detailed mechanism of improved developmental competence of SCNT embryos with TSA treatment is unclear, hyperacetylation of histones facilitates access of some factors to nucleosomes [12, 13]. Therefore, one of the reasons for the improved developmental competence of SCNT embryos with TSA treatment may be the access of reprogramming-related factors to nucleosomes. In addition, it has been shown that TSA treatment induces not only histone acetylation but also DNA demethylation [39, 40]. In fact, Ding et al. [29] suggested that TSA treatment induces a higher level of histone acetylation and lower level of DNA methylation at the 2-cell stage in bovine SCNT embryos, which facilitates epigenetic reprogramming of the transferred somatic cell nucleus. These findings indicate that histone acetylation and DNA methylation interact in a complex manner and are related to epigenetic reprogramming. Hence, modification of these epigenetic marks by TSA treatment may support epigenetic reprogramming of SCNT embryos. On the other hand, no difference in histone acetylation level was observed at the blastocyst stage among the groups. This result is consistent with previous studies reporting that the hyperacetylation effect of TSA treatment lasts for a short period after treatment [16] and that a high level of histone acetylation in blastocysts may not be necessary for embryo development [29]. On the other hand, Li et al. [40] demonstrated that treatment of SCNT embryos with TSA influences the expression of chromatin structure- and DNA methylation-related genes at the blastocyst stage and selectively increases the expression level of Sox2 and cMyc, which are responsible for embryonic development, at the blastocyst stage. Hence, these findings, combined with our data, indicate that the higher level of histone acetylation at the early stages with TSA treatment may influence gene expression at later stages, resulting in improvement of developmental competence in SCNT embryos.

In conclusion, we determined the optimal conditions of TSA
treatment (5 nM for 15–20 h) in miniature pig SCNT embryos. Furthermore, enhancement of the histone acetylation level at the pseudo-pronuclear to 2-cell stages could improve developmental competence of miniature pig SCNT embryos. These findings suggest that there is a relationship between developmental competence and the acetylation level of histone H3 in miniature pig SCNT embryos. Thus, this study provides the insight that the developmental competence of SCNT embryos could be enhanced by altering epigenetic modifications. Further research to investigate the relationships among other epigenetic modifications, developmental competence and global gene expression in detail are necessary to elucidate epigenetic reprogramming.

Acknowledgments

We are grateful to the staff of the meat inspection office in Sendai City for supplying porcine ovaries. This study was supported by Research Fellowships for Young Scientists to KY and SS from the Japan Society for the Promotion of Science.

References