Embryo implantation is blocked by intraperitoneal injection with anti-LIF antibody in mice

Jumpei TERAKAWA¹, ², Shoichi WAKITANI², Makoto SUGIYAMA¹, ², Naoko INOUE¹, Yasushige OHMORI¹, Yasuo KISO², Yoshinao Z. HOSAKA² and Eiichi HONDO¹

¹) Laboratory of Animal Morphology and Function, Division of Biofunctional Development, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
²) Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan

Abstract. Leukemia inhibitory factor (LIF) is essential for embryo implantation in mice and plays an important role in other mammals including humans. Intraperitoneal (ip) injections with anti-LIF antibody (7.5 μg/g body weight, 3 times) between D3 (D1 = day of vaginal plug detection) and D4 effectively blocked embryo implantation; complete inhibition was achieved in C57BL/6J mice, and implantation was dramatically reduced in ICR mice (reduced to 27%). Normal rabbit IgG used as the control did not disturb embryo implantation. Anti-LIF antibody was localized not only in the stroma, but also in the luminal epithelium and the glandular lumen after ip injections. Growth-arrested blastocysts were recovered from the uterus without any implantation sites in both strains. Blastocysts made contact with the LE on the antimesometrial side; however, uterine stromal cells did not undergo secondary decidual reaction, and the uterine lumen was open, even at D7. Several regions of decidualization in ICR mice treated with anti-LIF antibody were smaller than those of the control, and development of blastocysts was delayed. The expression of LIF-regulated genes, such as immune-responsive gene-1 and insulin-like growth factor binding protein-3, was significantly decreased in C57BL/6J mice treated with anti-LIF antibody compared with the control, but not in ICR mice. The present study demonstrated that simple ip injections of an antibody are sufficient to block one of the important factors involved in embryo implantation in mice, and this method should also be easily applicable to the investigation of other factors involved in implantation.

Key words: Anti-LIF antibody, Embryo implantation, Intraperitoneal injection, Leukemia inhibitory factor, Mice

Received: April 13, 2011
Accepted: July 18, 2011
Published online in J-STAGE: August 12, 2011
©2011 by The Society for Reproduction and Development.
Correspondence: E Hondo (e-mail: ehondo@agr.nagoya-u.ac.jp)
Predicted signaling networks have been examined by various techniques that block LIF signaling, including intrauterine injection with anti-LIF antibody [29, 30], LIF inhibitors [31], Stat3 decoy [32] and Stat3 inhibitors [33]; a significant reduction in the number of implantations was noted in each case. However, it is difficult to obtain quantitative data because it is not possible to establish the precise volume of the inhibitory agent that remains in the uterine horn during each experiment. The uterine lumen of the mouse is too narrow to inject more than 10 µl, and in some cases, the agent overflows from the vagina, even when the injection volume is less than 10 µl. A concise and reliable method is required. Because intravascularly injected exogenous antibody is detectable in the GE and LE [34], it is assumed that simple intraperitoneal (ip) injection with anti-LIF antibody could prevent embryo implantation. This method should also be easily applicable to the investigation of other factors involved in implantation. In this study, the behavior of ip-injected anti-LIF antibody on implantation was investigated.

Materials and Methods

Animals
All experimental procedures were performed under avertin anesthesia (Sigma-Aldrich, St. Louis, MO, USA) according to the guidelines established by the Committee for Animal Welfare at Nagoya University (approval number: 2010042803). C57BL/6J mice (purchased from Kyudo, Saga, Japan, and bred in our laboratory) and ICR mice (Japan SLC, Shizuoka, Japan) were used in the experiments at 6 to 12 weeks of age as models of low or high fertility (9.5 ± 1.3 pups/mother for C57BL/6J, 16.1 ± 1.6 for ICR mice). The first day of pregnancy (D1) was determined as the morning when a vaginal plug was observed in a female that had been housed with males the previous evening. For preparation of antibody, an 8-month old male Japanese white rabbit (Kyudo) was immunized. All animals were housed at 23 ± 3°C with controlled light-dark cycles (12 h light:12 h dark) and were fed ad libitum.

Preparation of antibody
A vector was constructed from pET-46 (Merck, Darmstadt, Germany) with recombinant LIF (rLIF; 179 amino acid residues containing the active sites of murine LIF, but without the signal peptide) [35, 36]. This was transformed into E. coli BL21 (DE3), and expression of the his-tagged rLIF was induced by treatment with 0.4 mM isopropyl β-D-thiogalactopyranoside (IPTG) (Wako, Osaka, Japan) for 4 h at room temperature (RT). Cells were lysed by ultrasonication, and recombinant protein was purified using His-trap FF (GE Healthcare, Little Chalfont, U.K.). Subsequently, rLIF was purified by reversed-phase chromatography (TFA/acetonitrile system) with a ProteinA apparatus (Shiseido, Tokyo, Japan). The activity of purified rLIF was assessed by administration to DI mice, and successful implantation was observed. DI mice were prepared as previously reported [27].

IgG purified with Hitrap rProtein A FF (GE Healthcare) from rabbit serum collected before immunization was used as the control. Antibody against LIF was developed by the rabbit, which was subcutaneously injected with a mixture containing rLIF (500 µg in 500 µl 10 mM PBS) and 500 µl TiterMax Gold (TiterMax, Norcross, GA, USA). Boosters were administered by intravascular injection of the antigen on 3 consecutive days (500, 1,000 and 2,000 µg rLIF, respectively) after 4 weeks. The antibody was purified from serum collected 1 week after the final injection.

The high reactivity of purified anti-LIF antibody against rLIF was determined by ELISA. Interaction between anti-LIF antibody and rLIF is detectable above 10^{-6} µg/ml. ELISA was performed by using the following materials: TaKaRa Peptide Coating Kit (Takara, Kyoto, Japan), polyclonal goat anti-rabbit antibody conjugated with horseradish peroxidase (HRP; dilution 1: 75,000; Bethyl, Montgomery, TX, USA), and TMB Substrate (Bethyl).

The specificity of anti-LIF antibody against natural LIF protein in mice was confirmed by Western blot analysis. Crude protein (20 µg) from the uterine tissues at D4 was separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) in an 8% gel. Proteins were transferred onto a polyvinylidene difluoride (PVDF) membrane (45 min) using Trans-Blot SD (Bio-Rad, Hercules, CA, USA). Blocking was performed by constant shaking in 2.5% bovine serum albumin (BSA)/Tris-buffered saline with Tween-20 (TBS-T) for 1 h at RT. Membranes were probed overnight at 4°C with anti-LIF antibody (40 µg/ml, diluted 1:1,000 in 2.5% BSA/TBS-T). Subsequently, the membrane was treated with polyclonal swine anti-rabbit antibody conjugated with HRP (Dako, Glostrup, Denmark) diluted 1:2,000 in 1% skimmed milk/TBS-T. Signals were detected using ECL Plus reagents (GE Healthcare) and a LightCapture II system (Atto, NY, USA).

Immunohistochemistry
Mice treated with anti-LIF antibody or vehicle were perfused with paraformaldehyde (4% in 0.1 M PB) on the evening at D4. Uteri were embedded in paraffin, and 4-µm sections were prepared. Uterine sections were deparaffinized, treated with 0.3% H2O2/methanol for 30 min, blocked with 1% BSA/PBS-T for 1 h at RT and incubated with biotinylated goat anti-rabbit antibody (Dako) diluted 1:200 overnight at 4°C. Avidin—biotin complexation (Vector Labs, Burlingame, CA, USA) was performed for 40 min at RT, and sections were visualized with 3,3’-diaminobenzidine (DAB; Dako).

Blockage of embryo implantation
Pregnant mice were intraperitoneally injected with antibody (7.5 µg/g body weight in 50 µl 10 mM PBS) based on measurements taken at 1200 and 2200 h on D3 and 1000 h on D4. The same amount of normal rabbit IgG was injected as the control. Mice were sacrificed on D7, and the number of implantation sites was counted. Macroscopic changes in the pregnant uterus were observed, and the number of corpora lutea was counted using a stereomicroscope. Statistical analysis was performed by the Welch’s t-test. The uterus was flushed with 10 mM PBS to collect blastocysts when no implantation site was identified. Uteri were fixed with phosphate-buffered formalin and embedded in paraffin. Sections (4 µm) were made with a Microtome (Leica Microsystems, Tokyo, Japan) and stained with haematoxylin-eosin (HE).

Semi-quantitative PCR
Uterine LEs from mice treated with anti-LIF antibody (or normal rabbit IgG) were collected by an established method [37] on
the evening at D4. In brief, LEs were incubated with 1% trypsin (Nacalai Tesque, Kyoto, Japan) in calcium- and magnesium-free Hanks’ balanced salt solution (Life Technologies, Carlsbad, CA, USA) for 90 min at 4°C and 60 min at RT. The sheet-shaped LEs were collected by pipette and steadily washed with 10 mM PBS. Samples were stored at −80°C. Total RNA was extracted by Isogen (Nippon Gene, Tokyo, Japan). cDNA was synthesized from 1 µg total RNA with an oligo-dT primer and ReverTra Ace reverse transcriptase (Toyobo, Osaka, Japan). Real-time PCR was performed using a StepOnePlus system (Life Technologies) with SYBR Green (Life Technologies). The thermal profile was an initial denaturation step (95°C, 10 min) followed by 40 cycles of denaturation (95°C, 15 sec), annealing and extension (60°C, 1 min). The primers (Irg1 and IGFbp3) used in this study have been described in a previous report [24]. Primers for cochlín were designed using Primer Express (Life Technologies): forward primer, 5′-gcaaaacctgctacaactcagtga-3′; reverse primer, 5′-ggcggaaattgctatctccaa-3′. Relative expression values of mRNAs from all samples except one sample (value 1) from the control were calculated regardless of the control or anti-LIF antibody treated group. The average value from the control including value 1 and those from the anti-LIF antibody treated group were compared. Statistical analysis was performed by Welch’s t-test or Student’s t-test.

Results

The specificity of anti-LIF antibody against natural LIF protein in mice was confirmed by Western blot analysis. Bands were observed at 70 and 55 kDa (Fig. 1); these bands were not present when

![Fig. 1. Western blot analysis of uterine tissue with anti-LIF antibody. Bands are present at apparent masses of 70 and 55 kDa.](image)

<table>
<thead>
<tr>
<th>Strain</th>
<th>Treatment</th>
<th>Mice</th>
<th>Implantation sites</th>
<th>Corpora lutea</th>
</tr>
</thead>
<tbody>
<tr>
<td>C57BL/6J</td>
<td>Anti-LIF antibody</td>
<td>6</td>
<td>0.0 ± 0.0*</td>
<td>8.2 ± 1.3</td>
</tr>
<tr>
<td></td>
<td>Normal rabbit IgG</td>
<td>4</td>
<td>9.5 ± 1.3</td>
<td>9.8 ± 1.3</td>
</tr>
<tr>
<td>ICR</td>
<td>Anti-LIF antibody</td>
<td>9</td>
<td>4.4 ± 5.5*</td>
<td>13.7 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>Normal rabbit IgG</td>
<td>12</td>
<td>16.1 ± 1.6</td>
<td>13.4 ± 2.4</td>
</tr>
</tbody>
</table>

Average number ± SD. *, P<0.01 vs. normal rabbit IgG.

![Fig. 2. Anti-LIF antibody detection in tissue taken on the evening of D4. Antibody is visible throughout the endometrium, in the LE (arrowheads in A and B) and on glandular luminal side (arrows in A and C). The inset (A) shows the vehicle-treated control. LE, luminal epithelium; S, stroma; GE, glandular epithelium. Scale bar, 100 μm.](image)
normal rabbit IgG was used; no band was observed in the absorption test using rLIF.

Anti-LIF antibody was detected throughout the endometrium 9 h after the final administration (Fig. 2). Localization of anti-LIF antibody was found in the LE (Fig. 2A and B). The few anti-LIF antibodies that were detected in GE cells were distributed in the luminal cavity (Fig. 2A and C).

The number of implantation sites was significantly decreased following injection of anti-LIF antibody, both in C57BL/6J and ICR mice (Table 1, Figs. 3 and 4). Normal rabbit IgG did not disturb embryo implantation (Figs. 3 and 4). In C57BL/6J mice treated with anti-LIF antibody, uteri were slightly reddish in color, but no visible implantation sites were detected at D7 (Figs. 3 and 4). Some blastocysts were recovered in the flushing solution from the mice treated with anti-LIF antibody (Fig. 5B). The blastocysts had already hatched from the zona pellucida, and the ectoplacental cone had formed (Fig. 5B, arrow). In uteri injected with anti-LIF antibody, blastocysts made contact with the LE at the antimesometrial side; however, uterine stromal cells did not undergo secondary decidual reaction, and the uterine lumen was open, even at D7 (Fig. 5A). In ICR mice, the average number of implantation sites in the mice with anti-LIF antibody was lower (4.4) than that for the control (16.1) (i.e., 73% reduction; Table 1, Fig. 3). Blastocysts were recovered from all mice that did not exhibit implantation sites. Development of the blastocysts in ICR mice was delayed, and the

Fig. 3. Hindrance of embryo implantation by anti-LIF antibody differs between mouse strains. Horizontal lines show average values in each group. The asterisks represent the significant differences between antibody-treated mice and controls within the same strain (P<0.01).

Fig. 4. Intraperitoneal injections of anti-LIF antibody interfere with embryo implantation at D7 in C57BL/6J mice (B, C) and ICR mice (E, F). Mice treated with normal rabbit IgG exhibited normal embryo implantation patterns (A, D). Arrowheads show the implantation sites. Scale bar, 5 mm.
extent of decidualization in the endometrium was lower than that of the control in some implantation sites (Fig. 5C and D).

The effect of anti-LIF antibody on LIF signaling in vivo was confirmed by semi-quantitative RT-PCR for 3 LIF-regulated genes: *Irg1*, *IGFbp3* [24] and cochlin [25]. The expressions of *Irg1* and *IGFbp3* mRNA were significantly decreased in C57BL/6J mice treated with anti-LIF antibody compared with the control (P<0.05; Fig. 6A). No significant difference was observed in cochlin mRNA (Fig. 6A). On the other hand, in ICR mice, only cochlin mRNA was significantly decreased (P<0.05); the 2 other genes did not differ between the 2 groups (Fig. 6B).

Discussion

The simple ip injections with anti-LIF antibody effectively blocked embryo implantation; complete inhibition was achieved in C57BL/6J mice. Because growth-arrested blastocysts were still present without the decidual response or closure of the uterine lumen at D7 (Fig. 6A and B), it is concluded that the implantation process ceased after administration of anti-LIF antibody. LIF is a glycoprotein whose molecular weight in different cells is in the range 20–70 kDa, depending on the degree of glycosylation [38–40]. The LIF protein has 3 binding sites for its receptor and can bind without any glycosylation or modification of three-dimensional structures [35]. The anti-LIF antibody used in this study bound to the binding sites of glycosylated native LIF protein (Fig. 1). It has been reported that ip injection of polyethylene glycosylated LIF antagonist (PEGLA) completely blocks embryo implantation in C57BL/6J mice [41]. The same result was obtained here by using anti-LIF antibody.

Immunohistochemistry was performed to detect anti-LIF antibody in the uterus to confirm that the antibody administered by ip injection reaches uterine tissues. The antibodies were distributed throughout the endometrium after ip injection, at least on the evening of D4 (Fig. 3A). Several cells in the LE were stained (Fig. 3B), but no strong reaction was found in the cytoplasm of the GE cells. Antibodies were also detected in the glandular lumen (Fig. 3C). Anti-LIF antibody in this study bound not only LIF in the stroma but also that in the LE and glandular lumen. An antibody administered by ip injection is taken into the bloodstream through the peritoneum and diaphragm [42, 43], and its blood concentration is as high as that with intravenous injection after 15 h [42]. As blood
flow in the uterus is raised by progesterone and estrogen during
the implantation period [44], it was assumed that antibodies were
smoothly delivered to the uterine tissue. Inhibitors of LIF applied
by the intraluminal route did not completely disrupt implantation
in most strains of mice, apart from C57BL/6J [29–31]; this is partly
because the potential of LIF to promote implantation in the stroma
in these strains is not negligible.

The morphology of the blastocysts recovered from the uterus by
flushing with PBS showed well-maintained and healthy structures
(Fig. 6B). Both LIF and LIF receptor are expressed in blastocysts
[45]; some investigations have demonstrated the effects of LIF and
LIF inhibitors on growing blastocysts [46, 47], and anti-LIF antibody
compromises the development of blastocysts in vitro [29]; no effect on
blastocysts was observed in studies of PEGLA [41] and Stat3 inhib-
itors [33]. Because the blastocysts obtained both in LIF-deficient
mice and LIF receptor-deficient mice had undergone implantation
[6, 48], the implantation failure in this study is probably caused by
disruption of maternal LIF action, and the direct effect of the anti-
LIF antibody on blastocysts was likely limited.

Implantation was not completely disrupted in ICR mice, unlike
that in C57BL/6J mice. Several regions of decidualization in ICR
mice treated with anti-LIF antibody were smaller than those of the
control (Fig. 6C and D), and development of blastocysts was de-
layed. This showed that growth and invasion of some blastocysts
into the endometrium were retarded because of prevention of LIF
signaling in the LE by anti-LIF antibody. The difference in the
number of implantation sites in ICR mice probably resulted from
a high concentration of LIF in uterine tissues by continuous secre-
tion of LIF from the GE and stroma. If an excess amount of LIF
proteins that did not bind to anti-LIF antibody remained, addi-
tional administration of the antibody into ICR mice was performed.
Even after 4 further injections of anti-LIF antibody (each 30 µg/g
mouse) to disturb implantation in ICR mice, some implantation
sites were still present (data not shown). LIF is essential for murine
implantation; however, the dependency of embryo implantation on
LIF appears to function in a strain-dependent manner in mice deficient
in p53, which regulates expression of LIF [49]. Implantation failure
is more severe in C57BL/6J background p53-deficient mice than
in 129SV mice [49]. The activity of LIF was blocked by anti-LIF
antibody in ICR mice, but other IL-6 family members might com-
penstate for LIF activity and induce decidualization in these mice.
Oncostatin M was localized to the implantation sites of wild-type
mice at D5 and D6 [50]. Oncostatin M, ciliary neurotropic factor
and cardiotrophin-1 also have affinity for LIF receptors and main-
tain the pluripotency of murine ES cell in place of LIF [51–53]. Mice deficient in LIFRβ show multiple placental, skeletal, neural and metabolic disorders and succumb to perinatal death [48]; these effects are far more severe than those in LIF-deficient mice [6]. Other IL-6 family members can play important roles in growth and development of the embryo through the LIF receptor.

To assess the effect of the anti-LIF antibody, semi-quantitative RT-PCR was performed for LIF-regulated genes in the LE. The results for the ICR mice were similar to those in a previous study, in which the activity of LIF was suppressed by Stat3 inhibitor [33]. Among the 3 LIF-regulated genes in this study, only Ir2g1 mRNA was not observed in mice following intraluminal administration of Stat3 inhibitor, which partly blocks embryo implantation [33]. The downregulation of Ir2g1 is most likely responsible for the failure of embryo implantation, and Ir2g1 seems to be a reliable marker for embryo implantation by LIF stimulation. The expression of Ir2g1 was significantly decreased in C57BL/6J mice treated with anti-LIF antibody, which show no implantation sites, but was not in ICR mice (Fig. 6A and B). The expression level of the above LIF-regulated genes tended to differ between C57BL/6J and ICR mice in this study in spite of the same anti-LIF antibody treatment, regardless of whether that implantation sites were present or not. It is suggested that strain-dependent action should be considered when the LIF signaling in embryo implantation is examined.

The present study has demonstrated that simple ip injections of an antibody are sufficient to block the function of particular molecule involved in embryo implantation, especially where knockouts result in embryonic and/or neonatal lethality.

Acknowledgments

This study was partly supported by Grants-in-Aid for Scientific Research (No. 20380161) and a Grant-in-Aid for JSPS Fellows (No. 22·9587) from the Japan Society for the Promotion of Science.

References

5. Shen M, Leder P. Leukemia inhibitory factor is expressed by the preimplantation uterus and selectively blocks primitive ectoderm formation in vitro. Proc Natl Acad Sci USA 1992; 89: 8240–8244. [Medline] [CrossRef]
7. Chen J, Cheng J, Shatzer T, Sewell L, Hernandez L, Stewart C. Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology 2000; 141: 4365–4372. [Medline] [CrossRef]
22. Song H, Lim H, Das SK, Paria BC, Dey SK. Dysregulation of EGF family of growth factors and COX-2 in the uterus during the preattachment and attachment reactions of the blastocyst with the luminal epithelium correlates with implantation failure in LIF-deficient mice. Mol Endocrinol 2010; 14: 1147-1161. [Medline] [CrossRef]
ANTI-LIF ANTIBODY ON IMPLANTATION

30. Mitchell MH, Swanson RJ, Oehninger S. In vivo effect of leukemia inhibitory factor (LIF) and an anti-LIF polyclonal antibody on murine embryo and fetal development following exposure at the time of transvaginal blastocyst transfer. Biol Reprod 2002; 67: 460–464. [Medline] [CrossRef]

53. Cheon YP, Xu X, Racchi MK, Racchi IC. Immune-responsive gene 1 is a novel target of progesterone receptor and plays a critical role during implantation in the mouse. Endocrinology 2003; 144: 5623–5630. [Medline] [CrossRef]