The Release of EGF Domain from EGF-like Factors by a Specific Cleavage Enzyme Activates the EGFR-MAPK3/1 Pathway in Both Granulosa Cells and Cumulus Cells During the Ovulation Process

Yasuhisa YAMASHITA¹) and Masayuki SHIMADA²)

¹)Laboratory of Animal Physiology, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima 727-0028, Japan
²)Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan

Abstract. In mammalian preovulatory follicles, LH stimulation induces the ovulation process, including follicular wall rupture, granulosa cell luteinization, cumulus cell expansion and meiotic maturation of the oocyte. The receptor for LH (LHCGR) is expressed mostly in granulosa cells of preovulatory follicles, and is rarely expressed in cumulus cells or oocytes. The expression level in granulosa cells dramatically decreases after ovulation stimuli. Thus, a potent factor(s) secreted by granulosa cells is required to stimulate not only granulosa cells via an autocrine manner but also cumulus cells and/or oocytes via a paracrine pathway. Recent reports showed that granulosa cells and cumulus cells express EGF-like factors that activate the EGF receptor (EGFR)-mitogen-activated protein kinase3/1 (MAPK3/1) (also known as extracellular signal-regulated kinase1/2 (ERK1/2)) pathway in both cell types. EGF-like factors are composed of a signal sequence, transmembrane domain and EGF domain, suggesting that release of the EGF domain by a specific enzyme is essential for interaction with the EGFR to induce the ovulation process. In our studies, TACE/ADAM17, which is known to be a proteolytic enzyme of EGF-like factors in many types of tissue, was found to be expressed in FSH/LH-stimulated granulosa cells and cumulus cells together with activation of the EGFR-MAPK3/1 pathway. When TACE/ADAM17 activity was decreased by a specific inhibitor or siRNA technique, granulosa cell luteinization, cumulus expansion and oocyte maturation were suppressed in an in vitro culture. Thus, TACE/ADAM17 is one of the key genes expressed in both granulosa cells and cumulus cells for induction of the ovulation process.

Key words: cAMP, EGF-like factors, PGE2, Progesterone, Ovulation

Expression of TACE/ADAM17 in Granulosa and Cumulus Cells

TACE/ADAM17 belongs to the ADAM family of proteins, which currently comprises more than 30 members. About 50% of ADAM proteins are expressed predominantly in the testis and play a role in spermatogenesis and fertilization. The others are involved in neurogenesis, myogenesis, and osteogenesis, and in the regulation of immune responses [9–11]. Unlike other types of ADAM protein, Tace/Adam17 mRNA is ubiquitously expressed in numerous tissues [12]; however, a high level of expression is observed in cancer cells, where it is involved in activation of the EGFR-MAPK3/1 pathway to induce cell proliferation and migration. As in cancer cells, the EGFR-MAPK3/1 pathway is transiently and dramatically activated in granulosa cells and cumulus cells during the ovulation process due to the expression of EGF-like factors. From the above information, we hypothesized that TACE/ADAM17 might be expressed in granulosa cells and cumulus cells, where it might work as a shedding enzyme on EGF-like factors during the ovulation process.

Using mRNA recovered from granulosa cells or cumulus cells of antral follicles, preovulatory follicles, and periovulatory follicles of eCG/hCG-primed swine, we investigated the temporal changes in Tace/Adam17 expression. The results revealed that administration of eCG to induce follicle development to the preovulatory stage did not increase the level of Tace/Adam17 mRNA in either granulosa or cumulus cells, whereas mRNA expression was significantly induced by subsequent hCG stimuli [13].

To clarify how Tace/Adam17 is expressed during the ovulation process, in vitro culture studies of granulosa cells and cumulus-oocyte complexes (COCs) were carried out. Treatment with FSH and/or LH also increased the expression level of Tace/Adam17 mRNA in both cell types, concomitantly with Areg and Ereg mRNA expression. Western blotting analysis also showed upregulation of the protein by FSH and LH in cumulus cells of COCs [14]. Furthermore, expression of Tace/Adam17 was significantly suppressed by inhibitors of the PKA, p38MAPK (MAPK14) or MAPK3/1 pathway [15]. Its proximal promoter contains multiple AP2 and Sp1 transcription factor binding sites and includes a GC box and a CCAAT box; thus the region including both boxes has potential promoter activity [16]. C/EBPα and C/EBPβ, which directly bind to a CCAAT box in promoter regions, are well-known targets of MAPK3/1; however, they are also activated by both PKA and p38MAPK. Following LH stimuli, PKA and p38MAPK are rapidly activated by a nongenomic pathway within 1 h, and then phosphorylation of MAPK3/1 is induced by an EGF-like factor expressed in mouse granulosa cells [17]. Thus, TACE/ADAM17 expressed by PKA- and p38MAPK-dependent mechanisms releases the EGF domain from EGF-like factors, which then increase the phosphorylation level of MAPK3/1. The MAPK3/1-C/EBP pathway further increases the expression level of TACE/ADAM17 to maintain the activation status of the signaling pathway (Fig. 1). This positive feedback system is required to induce a successful ovulation process as follows.

Function of TACE/ADAM17 in Granulosa and Cumulus Cells

The metalloproteinase domain of TACE/ADAM17 contains the zinc-binding consensus motif (HWLGHNFGAEHD) involved in coordinating zinc with histidine residues and creating the active site of the enzyme [12, 18]. In many tissues and cell types, TACE/ADAM17 has been reported to have putative substrates, including transforming growth factor-α (TGFα), heparin-binding EGF (HB-EGF), Notch, AREG and EREG [8, 19]. In the mouse ovary, the expression level of TGFα and HB-EGF is low and does not change during follicular development and ovulation [20], indicating that these factors are not the potential target proteins of TACE/ADAM17. Johnson et al. [21] reported that Notch mRNA was detected in response to PMSG stimuli in growing follicles, although the functional role of Notch in the oocyte maturation process has not yet been demonstrated.

It has been shown that Areg and Ereg are expressed in granulosa and cumulus cells during the ovulation process [3, 17], and their induction is observed concomitantly with the increase in Tace/Adam17 mRNA level [14, 15], suggesting that AREG and EREG might be physiological substrates of TACE/ADAM17 in periovulatory follicles. When porcine COCs were cultured for up to 40 h, the enzyme activity of TACE/ADAM17 was upregulated by gonadotropins as compared with cumulus cells of COCs before culture [14]. Phosphorylation of MAPK3/1 was induced by the addition of EGF or gonadotropins (FSH+LH) to cumulus cells of COCs. This phosphorylation of MAPK3/1 was completely downregulated by...
addition of the TACE/ADAM17 selective inhibitor, TAPI-2, when porcine COCs or granulosa cells were cultured with FSH and LH [14]. However, these inhibitory effects were not observed in COCs or granulosa cells with EGF-like factors. In addition, we showed that LH-induced phosphorylation of MAPK3/1 was suppressed by transfection with Tace/Adam17 siRNA in rat granulosa cells [14]. Thus, TACE/ADAM17 expressed in granulosa cells and cumulus cells facilitates release of the EGF domain of EGF-like factors, which then activates the EGFR-MAPK3/1 pathway in cumulus cells and granulosa cells during the ovulation process.

Positive Feedback Loop of EGF-like Factors, TACE/ADAM17 and PGE2 in Cumulus Cells of Porcine COCs

Prostaglandin E2 (PGE2) is synthesized and accumulates within the follicular fluid of periovulatory follicles. Mice deficient in Ptg2 (encoding cyclooxygenase-2; COX-2) or Pger2 (encoding PGE2 receptor 2, PGER2) show a decreased number of ovulated oocytes and complete loss of fertilization ability [22]. Importantly, our previous study showed the downregulation of EGF-like factor expression in Ptg2-deficient mice during administration of hCG. Interestingly, the expression of Ptg2 was upregulated by EGF-like factors [17], strongly indicating the existence of a positive feedback system between EGF-like factors and PGE2 during the ovulation process.

In an in vitro culture system of porcine COCs, expression of Ptg2 and Pger2 was induced by FSH concomitant with Areg, Ereg and Tace/Adam17 expression [23]. The expression of Areg, Ereg and Tace/Adam17 was significantly downregulated by the PTGS2 inhibitor, NS398, in cumulus cells of COCs cultured for 10 h, but not in those cultured for 5 h. During in vitro maturation of porcine COCs, the cAMP level was dramatically increased within 5 h, and this level was then maintained for up to 40 h [24]. However, the level of Fshr mRNA that encoded the FSH receptor was rapidly and significantly decreased in cumulus cells of COCs cultured with FSH alone [23], suggesting that other stimulators that increase the cAMP level in cumulus cells must be secreted from cumulus cells. Strikingly, the cAMP level was not changed by NS398 at 5 h, whereas it was significantly decreased at 10 h. Furthermore, NS398 dramatically suppressed MAPK3/1 after 10 h of culture but not after 5 h of culture. The addition of PGE2 alone induced cumulus expansion and/or oocyte meiotic maturation not only in pigs but also in mice [25, 26], indicating that PGE2 is the second factor that acts on cumulus cells to maintain the high level of cAMP. The results demonstrate that the initial expression of EGF-like factors and TACE/ADAM17 is induced in a gonadotropin-dependent manner, whereas sustained expression of EGF-like factors and TACE/ADAM17 is dependent on the PGE2-PGER2 pathway [23] (Fig. 2).

Terminal Regulation of TACE/ADAM17 Expression by the PGR Pathway in Cumulus Cells of Porcine COCs

Progesterone is synthesized and secreted during the ovulation process and formation process of the corpus luteum. Mice deficient in Nr3c3 (encoding the progesterone receptor, PGR) fail to ovulate [27, 28]; however, histological analysis of the ovaries of these mice revealed that cumulus expansion is normally induced after hCG injection. On the other hand, our previous studies showed that pharmacological inhibition of PGR or progesterone production during in vitro maturation of porcine COCs dramatically suppresses both cumulus expansion and oocyte maturation [29–32]. In addition, when one COC was cultured in each well, oocyte meiotic resumption was delayed as compared with wells where 20 COCs were cultured. The level of progesterone in the medium was raised by increasing the number of COCs in each well [33], suggesting that the progesterone-PGR pathway is required to induce cumulus expansion and oocyte maturation in pig COCs, at least in in vitro culture.

To clarify the roles of the progesterone-PGR pathway in more detail, we focused on the EGFR-MAPK3/1 pathway. Addition of the PGR antagonist, RU486 did not affect FSH-induced Areg and Ereg expression at any cultivation time point. RU486 also did not affect Tace/Adam17 mRNA expression in cumulus cells of COCs cultured up to 20 h; at 30 or 40 h, however, RU486 significantly suppressed Tace/Adam17 mRNA expression. Although the phosphorylation level of MAPK3/1 and expression of its target genes (Has2 and Tnfαip6) were not affected by RU486 up to 20 h, these levels were dramatically suppressed by RU486 at 40 h. Furthermore, cumulus expansion and the percentage of oocytes reaching the MII stage were also suppressed by RU486. Thus, the results indicated that the progesterone-PGR pathway regulates the expression level of Tace/Adam17 during late cumulus expansion but not the levels of EGF-like factors, which are essential for the terminal secretion of EGF-like factors during cumulus expansion and oocyte meiotic maturation in pigs [34] (Fig. 2). However, because the promoter region of the Tace/Adam17 gene dose not contain the progesterone responsive element (PRE) [16], further study is required to understand how terminal Tace/Adam17 gene expression is regulated by the progesterone-PGR pathway during this phase.

Conclusion

EGF-like factors are the most important and potent factors that enhance oocyte maturation and ovulation. Our studies have focused on the mechanisms that activate EGF-like factors. We have shown that the high expression of Tace/Adam17 in granulosa and cumulus cells of porcine COCs is induced in a PGE2-dependent manner. The sequential induction of EGF-like factors enhances activation of MAPK3/1 in cumulus cells. Furthermore, we revealed that the progesterone-PGR pathway is required for maintenance of Tace/Adam17 mRNA gene expression, but not for maintenance of the gene expression of EGF-like factors, in order to sustain MAPK3/1 activation in late cumulus expansion. In summary, activation of the EGFR-MAPK3/1 pathway via a TACE/ADAM17-released EGF domain from an EGF-like factor induces cumulus expansion and oocyte maturation in porcine COCs.

Acknowledgements

Dr JS Richards and Dr M Hishinuma provided us with outstanding assistance and good suggestions. This work was supported in part by Grants-in-Aid for Scientific Research No. 19880202 and No. 22780251 (Y Y), and No. 21688019, No. 21028015 and No. 21248032 (M S) from the Japan Society for the Promotion of Sci-
ence (JSPS). Porcine FSH was kindly provided by Dr AF Parlow, National Hormone and Pituitary Program, National Institute of Diabetes and Digestive and Kidney Diseases, USA. We thank Dr R Nishimura, Dr T Okazaki, Dr I Kawashima, Mr T Mizukami, Mr T Koike, Ms M Okamoto, Ms R Iyori and Mr H Mitsufuji for technical assistance, and the staff of the Meat Inspection Office in Tottori Prefecture and Hiroshima City for supplying the porcine ovaries.

References


20. Conti M, Hsieh M, Park JY, Su YQ. Role of the epidermal growth factor network in
ovarian follicles. Mol Endocrinol 2006; 20: 715–723. [Medline] [CrossRef]


34. Yamashita Y, Kawashima I, Gunji Y, Hishinuma M, Shimada M. Progesterone is essential for maintenance of Tace/Adam17 mRNA expression, but not EGF-like factor, in cumulus cells, which enhances the EGF receptor signaling pathway during in vitro maturation of porcine COCs. J Reprod Dev 2010; 56: 315–323. [Medline] [CrossRef]