Augmentation of gonadotropin-releasing hormone receptor expression in the post-lactational mammary tissues of rats

Ryota TERASHIMA1), Titaree LAOHARATCHATHATANIN2), Shiro KURUSU1) and Mitsumori KAWAMINAMI1)

1)Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
2)Clinic for Small Domestic Animals and Radiology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok 10530, Thailand

Abstract. Gonadotropin-releasing hormone (GnRH) is a neurohormone of the hypothalamus controlling pituitary gonadotropin secretion and hence gametogenesis. While it has also been believed that GnRH is synthesized and functions in various peripheral tissues, the expression of GnRH receptor (GnRH-R) in peripheral tissues is not well-described. We previously found that annexin A5, which is increased in the pituitary gonadotropes by GnRH, is dramatically increased in rat mammary epithelial cells after weaning, suggesting that local GnRH is responsible for this increase. Annexin A5 is a member of the annexin family of proteins and is thought to be involved in various regulatory mechanisms, including apoptosis. In the present study, we examined GnRH-R expression in the mammary tissues after weaning. Although GnRH-R mRNA was not detected in the mammary tissues during lactation, it was dramatically increased after weaning. Forced weaning at mid-lactation (day 10) also promoted the expression of GnRH-R transcripts in mammary tissues within 2 days. Furthermore, western blotting analysis with anti-GnRH-R showed that the expression of an immuno-positive 60-kDa protein, whose size was equivalent to that of rat GnRH-R, was confirmed to increase after weaning. These findings clarified the induction of GnRH-R in the mammary tissues after weaning and suggest that GnRH is involved in the involution and tissue remodeling of post-lactating rat mammary tissues.

Key words: Annexin A5, Gonadotropin-releasing hormone (GnRH), GnRH receptor, Involution, Mammary gland

Received: March 14, 2016
Accepted: June 4, 2016
©2016 by the Society for Reproduction and Development
Correspondence: M Kawaminami (e-mail: mitsumor@vmas.kitasato-u.ac.jp)
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

Materials and Methods

Wistar-Imamichi rats bred in our laboratory were used in this study. Rats were maintained in rooms with controlled temperature and light at 23 ± 3°C and 14 h light/10 h dark cycle (lights on at
PCR (RT-PCR) for (Applied Biosystems, Foster City, CA, USA). Reverse transcription–
into cDNA using a High Capacity cDNA Reverse Transcription Kit reagent (Invitrogen, Carlsbad, CA, USA) and then reverse-transcribed
–80°C until RNA extraction. Total RNA was extracted using TRIzol
The tissue samples were snap-frozen in liquid nitrogen and stored at
(weaning day) rats were harvested at 0 or 6 h after pup removal.
22, 23, or two days after forced weaning on D10. The tissues of D21
Medicine, Kitasato University.
for Laboratory Animals, Care and Use at School of Veterinary
experiments of Kitasato University and approved by the Committee
experiments were performed according to the guidelines for animal
et al.
and mid-lactational forced weaning was performed on D10. All
eight on D1. Pups were removed from their dam on D21 of lactation
day 0 (D0) of lactation and the number of pups was adjusted to
500 h). They were allowed free access to laboratory chow and
tap water. Adult female rats showing at least two regular four-day
estrus cycles were mated. The day of parturition was defined as
day 0 (D0) of lactation and the number of pups was adjusted to
eight on D1. Pups were removed from their dam on D21 of lactation
and mid-lactational forced weaning was performed on D10. All
experiments were performed according to the guidelines for animal
experiments of Kitasato University and approved by the Committee
for Laboratory Animals, Care and Use at School of Veterinary
Medicine, Kitasato University.

Inguinal mammary tissues were collected from rats on D12, 21,
22, 23, or two days after forced weaning on D10. The tissues of D21
(weaning day) rats were harvested at 0 or 6 h after pup removal.
The tissue samples were snap-frozen in liquid nitrogen and stored at
–80°C until RNA extraction. Total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and then reverse-transcribed
into cDNA using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). Reverse transcription–
PCR (RT-PCR) for GnRH-R or ribosomal protein L19 (RPL19) was performed using Premix Taq™ (Ex Taq™ Version 2.0; Takara Bio,
Shiga, Japan) for 35 or 22 cycles, respectively, at 94°C for 30 sec,
58°C for 30 sec, and 72°C for 60 sec, with an initial denaturing
step at 94°C for 2 min and a final elongation step at 72°C for 7 min.
Primers used in this study are listed in Table 1. Amplified products
were separated by 2% agarose gel electrophoresis and detected by
ethidium bromide staining.

Inguinal mammary tissues were also collected from rats each
day from D20 to 24 for western blot analysis. The tissues of D21
(weaning day) were harvested at 0 or 6 h after pup removal.
The anterior pituitary of the rat was collected on D23. The tissues were
homogenized and boiled for 5 min in SDS sample buffer. The
samples containing 20 μg of protein were electrophoresed on 12%
polyacrylamide gels (Bio-Rad, Hercules, CA, USA) and transferred
onto polyvinylidene fluoride membranes (Bio-Rad). Membranes
were blocked with 5% skim milk (Wako Pure Chemicals, Osaka,
Japan) for 1 h at room temperature and then incubated with primary
antibodies: anti-GnRH receptor, mouse monoclonal antibody (1:200;
Acris Antibodies GmbH, Herford, Germany), or anti-β-actin mouse
monoclonal antibody (1:1,000; C4, Santa Cruz Biotechnology, Santa
Cruz, CA, USA), overnight at 4°C. The GnRH-R antibody was
raised by immunization of the N-terminal 1–29 amino acid peptide
of human GnRH-R, which shows 82.8% homology with rat GnRH-R
and less than 40% homology with other rat proteins. After washing,
the membranes were incubated with peroxidase-conjugated goat IgG
fraction to mouse IgG (1:20,000; ICN Pharmaceuticals, Aurora, OH,
USA) for 2 h at room temperature. Immunoreactive protein was
detected with ECL Plus Western Blotting Detection Reagents or
ECL Prime Western Blotting Detection Reagents (GE Healthcare,
Little Chalfont, UK). The signal was detected by exposure of the
membrane to an X-ray film for 5, 10, or 15 min with an ImageQuant
LAS 4000 digital imaging system (GE Healthcare).

Results and Discussion

RT-PCR examination for GnRH-R mRNA showed no amplification
in the mammary tissues of lactation D20, a day before weaning (Fig.
1A). GnRH-R mRNA was dramatically increased over time until
two days after weaning on D23 (Fig. 1B). Next, the expression was
decreased to trace levels on D26 and 29 (Fig. 1A). This indicates that
the expression of GnRH-R is well-regulated and that the cessation
of suckling stimuli triggers this expression. Ikeda et al. found that
GnRH mRNA was expressed in the mouse mammary tissues during
the lactating and involution periods, but did not detect GnRH-R
mRNA by PCR [31]. This may be because Ikeda et al. did not

determine the regulation of GnRH-R mRNA expression during the
narrow period just after weaning.

We further confirmed the expression of GnRH-R in mammary
tissues with different sets of primers in forced weaned rats. The
GnRH-R gene consists of three exons and encodes 984 base pairs

<table>
<thead>
<tr>
<th>Target</th>
<th>Primer (5′-3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GnRH-R</td>
<td>Forward: AATCATCTTCGCCCTCACCAC</td>
</tr>
<tr>
<td></td>
<td>Reverse: AGCACCGGTTAGAAGAAGCA</td>
</tr>
<tr>
<td>GnRH-R exon 1</td>
<td>Forward: CCGTCTTTGGAGAAATATGG</td>
</tr>
<tr>
<td></td>
<td>Reverse: AGGCAGCAGAATGTAAGAT</td>
</tr>
<tr>
<td>GnRH-R exon 2</td>
<td>Forward: TCTTCAGGATGACTCTTACGCC</td>
</tr>
<tr>
<td></td>
<td>Reverse: CCTGATGAAGGACTGTGTG</td>
</tr>
<tr>
<td>GnRH-R exon 3</td>
<td>Forward: CAAAGAATAATCCTCAAGACA</td>
</tr>
<tr>
<td></td>
<td>Reverse: TCCCGTATATGGTTTCACGC</td>
</tr>
<tr>
<td>RPL19</td>
<td>Forward: GGAAGCCCTGTGACTGTCCAT</td>
</tr>
<tr>
<td></td>
<td>Reverse: CCATGAGAATCCCGTTTGT</td>
</tr>
</tbody>
</table>

Fig. 1. RT-PCR analysis of GnRH-R mRNA in mammary tissues after lactation. RT-PCR was performed with total RNA isolated from
mammary tissues of three rats each on day 21 before weaning and 6 h after weaning on days 21, 22, and 23. GnRH-R mRNA was
detected using the primers shown in Table 1. RPL19 was used as
an internal control. The lane on the left side is the 100-bp DNA ladder marker. The primer sets for GnRH-R and RPL19 mRNA
were designed to yield 251-bp and 264-bp fragments.

Table 1. Primers used in the current study

<table>
<thead>
<tr>
<th>Target</th>
<th>Primer (5′-3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GnRH-R</td>
<td>Forward: AATCATCTTCGCCCTCACCAC</td>
</tr>
<tr>
<td></td>
<td>Reverse: AGCACCGGTTAGAAGAAGCA</td>
</tr>
<tr>
<td>GnRH-R exon 1</td>
<td>Forward: CCGTCTTTGGAGAAATATGG</td>
</tr>
<tr>
<td></td>
<td>Reverse: AGGCAGCAGAATGTAAGAT</td>
</tr>
<tr>
<td>GnRH-R exon 2</td>
<td>Forward: TCTTCAGGATGACTCTTACGCC</td>
</tr>
<tr>
<td></td>
<td>Reverse: CCTGATGAAGGACTGTGTG</td>
</tr>
<tr>
<td>GnRH-R exon 3</td>
<td>Forward: CAAAGAATAATCCTCAAGACA</td>
</tr>
<tr>
<td></td>
<td>Reverse: TCCCGTATATGGTTTCACGC</td>
</tr>
<tr>
<td>RPL19</td>
<td>Forward: GGAAGCCCTGTGACTGTCCAT</td>
</tr>
<tr>
<td></td>
<td>Reverse: CCATGAGAATCCCGTTTGT</td>
</tr>
</tbody>
</table>
through exons 1–3 in rodents [33, 34]. We examined the expression of exons 1, 2, and 3 simultaneously. Mammary tissues were collected from a forced weaned rat after two days and from a lactating rat. The expression of each exon was equally stimulated after weaning (Fig. 2). This result again revealed that the cessation of suckling induces GnRH-R mRNA expression in the mammary tissues and that full-length mRNA is synthesized.

We previously reported that the expression of annexin A5 is dramatically increased in the epithelial cells of mammary tissues [23]. We predicted that GnRH acts locally in the mammary gland during post-lactational involution. We also published several reports regarding the relationship between GnRH and annexin A5 in various tissues [27–30]. Currently, the physiological function of annexin A5 is unknown, but it is thought to be involved in apoptosis and tissue remodeling. The present data support that GnRH affects degeneration and tissue remodeling in the mammary epithelium after lactation.

To confirm the translation of GnRH-R mRNA, western blotting analysis using a GnRH-R antibody against the N-terminal peptide sequence was performed. The results confirmed two immunoreactive bands, approximately 60 kDa and 30 kDa proteins, in the lactating and post-lactating mammary tissues. Both bands were also observed in the anterior pituitary tissue (Fig. 3). A previous study that also used a GnRH-R monoclonal antibody against the N-terminal 1–29 amino acid residues, which differed from the antibody used in the present study, detected an approximately 60-kDa protein in the rat pituitary gland [35]. GnRH-R in mice and rats is a seven-transmembrane, G-protein-coupled receptor of 327 amino acid residues with two or three N-terminal glycosylation sites and can be detected at 55–70 kDa by SDS-PAGE [36]. Therefore, the 60-kDa band is considered a natural GnRH-R. This band was increased after weaning and reached a peak on D23, coinciding with mRNA results. Interestingly, there was another 30-kDa immunoreactive band, which decreased after weaning. Although the sequence of the 30-kDa protein is not known...
and was observed even during lactation while there was no detectable level of GnRH-R mRNA, the GnRH-R variant may have been present. Theoretically, alternative splicing would produce a shorter GnRH-R. Alternatively, impairment of post-translational glycosylation may produce a GnRH-R with a lower apparent molecular weight on SDS-PAGE [36]. The molecular weight of nascent GnRH-R is 37 kDa. Future studies are necessary to investigate the post-transcriptional or post-translational modification of GnRH-R in the mammary gland.

Time-specific expression of GnRH-R in the mammary gland after pup removal strongly suggests that the expression is related to changes in the endocrine milieu after lactation, specifically the cessation of intensive and functional restoration of GnRH-R expression in this model. Further studies are needed to clarify the role of GnRH-R in apoptosis and the signaling pathways involved in the post-lactational mammary gland.

In summary, we detected a post-lactational increase in GnRH-R expression in rat mammary tissues. These results suggest that local GnRH is involved in the involution of mammary tissues after weaning to induce epithelial apoptosis and tissue remodeling.

Conflict of Interests: None of the authors have any potential conflicts of interest associated with this research.

Acknowledgments

The authors thank Ms Janet Kline Cook for proof-reading this manuscript and Ms Miyoko Nakata for technical assistance.

References

25. Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev 2002; 82: 331–371. [Medline] [CrossRef]

