Journal of Reproduction and Development
Online ISSN : 1348-4400
Print ISSN : 0916-8818
ISSN-L : 0916-8818
Original Article
Effects of exposure to methylglyoxal on sperm motility and embryonic development after fertilization in mice
Tatsuya NAKANOMizuki KONOKazuki SEGAWASatoshi KUROSAKAYoshiharu NAKAOKAYoshiharu MORIMOTOTasuku MITANI
Author information
JOURNAL OPEN ACCESS
Supplementary material

2021 Volume 67 Issue 2 Pages 123-133

Details
Abstract

Methylglyoxal (MG) is a precursor for the generation of endogenous advanced glycation end-products involved in various diseases, including infertility. The present study evaluated the motility and developmental competence after in vitro fertilization of mouse sperm which were exposed to MG in the capacitation medium for 1.5 h. Sperm motility was analyzed using an SQA-V automated sperm quality analyzer. Intracellular reactive oxygen species (ROS), membrane integrity, mitochondrial membrane potential, and DNA damage were assessed using flow cytometry. The matured oocytes were inseminated with MG-exposed sperm, and subsequently, the fertilization and embryonic development in vitro were evaluated in vitro. The exposure of sperm to MG did not considerably affect the swim-up of sperm but resulted in a deteriorated sperm motility in a concentration-dependent manner, which was associated with a decreased mitochondrial activity. However, these effects was not accompanied by obvious ROS accumulation or DNA damage. Furthermore, MG diminished the fertilization rate and developmental competence, even after normal fertilization. Collectively, a short-term exposure to MG during sperm capacitation had a critical impact on sperm motility and subsequent embryonic development after fertilization. Considering that sperm would remain in vivo for up to 3 days until fertilization, our findings suggest that sperm can be affected by MG in the female reproductive organs, which may be associated with infertility.

Graphical Abstract Fullsize Image
Content from these authors
© 2021 The Society for Reproduction and Development

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top