研究論文

水溶液系におけるイオン種の分離 －多孔質電極を用いる簡易電気泳動装置を適用して－

田中 恒夫*・吉田 享史*・杉戸 千裕*

要 旨

水溶液系におけるイオン種の分離において、多孔質を電極として用いる電気泳動装置の適用を提案し、その可能性および操作因子等について検討した。電極として、炭素多孔質材、ステンレス板、チタン板、チタン粉末充填体、および白金めっき炭素多孔質材を選択し、通電条件を種々変化させて回分実験を行った。被検水として硫酸アンモニウム溶液を使用し、通電時の電極セルにおけるイオン種（NH₄⁺ と SO₄²⁻）濃度の変化を観察した。電極として炭素多孔質材を用いることによりイオン濃度は減少し、その速度は電圧と電流に依存して変化した。また、白金めっき炭素多孔質電極を用いたところイオン濃度の減少速度は上昇した。電極を炭素多孔質からチタン粉末充填体へ変更した結果、イオン濃度の減少速度は低下した。電極に板材を用いた実験では、イオン濃度の減少は認められなかった。本実験より、白金めっき炭素多孔質電極を使用することにより電気泳動装置の分離性能は安定すると考えられた。

キーワード：多孔質電極、電気泳動、イオン種、分離技術

はじめに

分離技術は、物質やエネルギーの生産、上下水道、食品、医療、環境浄化およびリサイクルなど、様々な分野において広く適用されている。特に、物質の生産や循環等のプロセスでは、混合物から目的の物質を分離・回収する工程はその中枢となっている。古典的な原理からハイテクまで、多種多様な分離装置が研究開発され、実用化されている。

水溶液系を対象とした分離技術に着目すると、その原理は、ろ過や遠心分離などの機械的分離、電気透析や逆浸透などの輸送的分離、および抽出や精析などの拡散的分離の3つに大別される。1）機械的分離は異相系、輸送的分離は異相系を対象とする。また、複雑な混合系から目的の物質を得るためには、これらの技術を組み合わせて分離を行うこともある。

水溶液系－均相系からのイオン種の分離・濃縮を目的とした場合、適用範囲の広い技術として電気透析法や逆浸透法等が一般的にとらえられる。しかしながら、電気透析法に関して、前処理等の付帯設備の必要性、消費電力の低減化、膜の長寿命化など、また、逆浸透法については、分離速度の遅さ、付帯設備の複雑さ、ランニングコスト（RO膜の再生頻度や消耗）の高さ、および維持管理の煩雑さなどの問題点が指摘されている。1）電気透析法や逆浸透法はすでに確立した技術として様々な分野で実用化されているが、装置構造や付帯設備等をシンプルにしてインシナルコストをランニングコストの低減化を図り、分離速度に重きを置いて装置開発することにより、それらの実用化の範囲はさらに広くなると考えられる。

本研究では、水溶液系－均相系におけるイオン種の分離において、多孔質を電極として用いる電気泳動装置（以下、本装置）4）の適用を提案し、その可能性および操作因子等について実験的に検討した。具体的には、精析法等により排水から栄養塩類を除去・回収する際4）には濃度が比較的高い方が有利であるため、その前段のプロセスとしての適用を想定している。また、本装置の特徴として、1）電極として多孔質材を用いる必要があるが、膜を使用しないため装置構造は比較的簡単、2）数ボルト程度あるいはそれ以下の低
電圧印加でイオン種の分離・濃縮が可能。電極セルの設置の仕方による分離・濃縮効率の変化は小さい。構造が簡単であるため適用範囲は広く、既存装置・施設への付加も容易、などが挙げられる。本装置は、少量の水溶液からの高度な分離ではなく、排水等からの簡易連続分離に適した技術と考えられる。

1. 実験装置と方法

1.1 実験装置
実験に用いた装置(電極セル)の概略を図1に示す。電極セルは、厚さ0.5cmの塩化ビニール板で作製した。セルの大きさは、電極を装着した際の有効容量が500ml以上となるように、幅10cm×長さ8cmとした。電極として、繊10cm×厚さ0.1cmのステンレス板、10cm×10cm×1cmの炭素多孔質材(0.5～1mm程度の粒状活性炭の圧縮成型体で単位体積当りの質量が0.4～0.5g/cm³のもの)、10cm×10cm×0.5cmのチタン板、チタン網のケーシングの中にチタン粉末(45μm以下)を充填したもの(7cm×7cm×3.5cm)を、上記の炭素多孔質材に0.1μm厚のめっき処理を施したもの(めっき)を用いた。電極への印加は、直流安定化電源(KIKUSUI、PAS-40-18)を用いて行った。実験条件により、陰・陽極間のほば中央に、直 径2mm程度の孔を複数開けた塩化ビニール製の仕切り板(開孔率＝0.5％)を設置した。また、循環ポンプ(EYELA、PR2100)およびスターラーを用いてセル内を攪拌した。

1.2 実験方法
実験は、図1のように陰極、陽極、仕切り板をセル内に装着した後、被検水としての硫酸アンモニウム溶液を約500ml注入して回分方式で行った。被検水のアンモニウムイオン(NH₄⁺)および硫酸イオン(SO₄²⁻)の初期濃度はそれぞれ70～110mg/L、300～350mg/Lの範囲であった。本実験では主に、NH₄⁺の多孔質陰極への移動(分離および濃縮)について検討した。回分実験のトータル時間は6時間とし、開始から3時間までは無通電の条件、後半の3時間は電流を用いて通電した。前半の3時間無通電条件とした理由は、NH₄⁺の多孔質電極への吸着等の影響を把握するためである。なお、被検水のサンプリングは電極セルの中央部より行った。

実験条件の詳細を表に示す。実験1は対照実験で、陰・陽極ともに平板電極を用いて通電を行った。電圧は30Vとした。実験2～6では、陰極に炭素多孔質材(2枚)、陽極にチタン板材(1枚)を用いた。電圧は1.5～60Vの範囲で変化させた。実験7、8では電極間に仕切り板を挿入し、定電圧条件下で電流を制御した。実験9～12ではセル内を攪拌し、NH₄⁺の移動における攪拌の影響について検討した。実験13、14では、陰極にチタン粉末充填電極を用いて通電を行い、多孔質電極を用いた場合との相違について検討した。
実験15,16では、陰極として白金めっき施した炭素多孔質材（1枚）を用い、電流変化における電圧・電流の変化や安定性等について検討した。そして、実験17,18では、陽極に白金めっき炭素多孔質材を用いて電解を行った。陰極の溶解に対する白金めっきの効果等について検討した。

1.3 分析項目と方法

本実験では、陰イオン（SO₄²⁻）濃度と陽イオン（NH₄⁺）濃度の分析を行った。分析は下水試験方法7）に準拠して行った。SO₄²⁻濃度はイオンクロマトグラフ（DIONEX, DX-100）、NH₄⁺濃度はイオンクロマトグラフ（DIONEX, DX-320）を用いて測定した。

2. 実験結果および考察

2.1 電圧の影響

電圧を1.5～60Vの範囲で段階的に変化させて回分実験を行った。通電実験の結果を図2に示す。図2には平板陰極を用いて行った対照実験（実験1）の結果も併せて示した。まず、対照実験の結果についてみると、30Vと比較的高い電圧で通電を行ったが、NH₄⁺濃度の大きな変化は認められなかった。平板陰極ではNH₄⁺の分離による電気泳動の効果は期待できないこと、および電極反応によるNH₄⁺濃度の減少は無視できることができた。

電圧を1.5～3.0Vと低めに設定した実験2,3では、対照実験の結果と同様にNH₄⁺濃度の大きな変化は認められなかった。このとき、電流はほとんど流れなかった。電圧3V以下の条件では、通電の効果は極めて小さいことがわかった。

電圧を10～60Vの範囲で変化させた実験4～6において、NH₄⁺濃度は大きく変化した（図2）。特に、60Vを与ええた実験6では、通電を開始してから30分後には10mg/l以下まで減少した。NH₄⁺濃度の減少速度は電圧に依存して変化することが確認できた。なお、実験4～6における電流は、それぞれ80,400,1360mAであった。

また、実験1と実験5（実験1と同じ電圧を与え）の結果を比較すると、NH₄⁺濃度の減少は多孔質陰極を用いた場合のみ起こる現象であることがわかった。すなわち、導電性多孔質材をセルの有効容積に対して一定の充填率で浸漬して通電することにより、NH₄⁺濃度の低い部分がセルの中央部に形成されることがわかった。これは同時に、NH₄⁺濃度の高い部分の存在を示唆する。通電により、セル内において濃度の高い領域（多孔質材内部とその近傍）と低い領域（バブル）が形成されたと推察される。

なお、各回分実験の半分の無通電条件においてNH₄⁺濃度の大きな変化は認められなかった。多孔質材への物理的吸着等の影響は無視できと考えられる。

2.2 電流の影響

セルの中央部に非導電性の仕切り板を設置し、定電圧条件下で電流を制御して通電実験を行った。実験は10V（実験7）と30V（実験8）の条件で行った。実験結果を、仕切り板なしの条件で行った実験4（10V）、5（30V）の結果と比較して図3に示す。

まず、実験4では電流は80mA以上に達し、NH₄⁺濃度は最終的に40mg/l以下まで減少した。これに対し、仕切り板を設置した実験7では、流れた電流は実験4における値の1/4程度で、通電終了時のNH₄⁺濃度は70mg/l程度で止まった。また、30Vの条件においても仕切り板の挿入の影響は明確で、電流を開始してから2時間までNH₄⁺濃度の減少速度の差は顕著であった（図3）。

定電圧通電の条件下において、仕切り板を設置して電流を制御することにより、NH₄⁺濃度の減少速度は大きく変化することがわかった。本研究では電圧を主要な因子と考え、それに対する変化させ通電実験を行ったが、NH₄⁺の分離において物質移動に関連する電流の制御も重要であることが確認できた。

2.3 搬送の影響

循環ポンプ等を用いてセル内を搅拌し、NH₄⁺の分離における溶液流れの影響について
く、その減少速度も同程度であることがわかる。本実験で設定した流動条件では、セル内流動およびその方向の影響は小さいと判断できる。なお、ここでは電圧は10Vで一定としたが、今後は電圧を変化させた場合の損失の影響についても検討する必要がある。

次に、スターラーによる損失（3cm程度の損失を用いて1分間に200〜300回転）の条件で通電実験（実験12）を行った。ここでは、電圧は30Vとした。実験結果を、同じ電圧で損失なしが条件で行った実験5の結果も併せて図7に示す。両者を比較すると、スターラー損失を行った実験12において、通電終了時のNH₄⁺濃度は約15mg/lと若干高く、またその減少速度も低いことがわかる。先の循環ポンプを用いて行った実験の結果とは異なり、NH₄⁺の分離における損失の影響が若干ではあるが認められた。

2.4 チタン粉末充電極の使用

NH₄⁺の分離において、炭素多孔質材以外の電極の使用が可能かどうかを検討するため、ここではチタン材に着目し、その粉末を充填した電極を用いて通電実験（実験13, 14）を行った。実験結果を、炭素多孔質電極を用いて行った実験（実験6）の結果も併せて図6に示す。

実験13においてNH₄⁺濃度の大きな変化は認められなかったが、60Vの高い電圧を与えた実験14では3時間の通電で20%程度減少した。しかしながら、炭素多孔質材を使用した実験6の結果を比較すると、NH₄⁺濃度の減少速度は極端に低いことがわかる。チタン粉末充電極の使用は一定の電圧を与えで可能になると考えられるが、現時点では炭素多孔質電極の方が適していると判断できる。

2.5 炭素多孔質電極のめっき処理

めっき処理を施した炭素多孔質材（1枚）を陰極として用いて通電実験（実験15）を行った。実験結果を、めっき処理なしの電極（1枚）を用いて行った対照実験の結果も併せて図7に示す。対照実験では通電終了時のNH₄⁺濃度は60mg/l付近であったが、めっき処理
電極を用いた実験15では50mg/L以下まで低下し、若干ではあるがその減少速度は上昇した。また、電流に関しては、対照実験に比較して10～20mA程度の増加が認められた。電圧30Vに設定した実験16では、NH₄⁺濃度は最終的に20mg/L付近まで低下し、その減少速度はさらに高くなった。白金めっき電極を使用することにより、NH₄⁺濃度の減少速度は高くなることがわかった。これは、電流増加が認められることから、通電抵抗の減少の効果と考えられる。

次に、白金めっき炭素多孔質材を陽極として用いて通電実験を行った。通電時のNH₄⁺濃度の経時変化を図8に示す。また、この実験では陰イオン（SO₄²⁻）濃度の変化も観察した（図9）。まず、NH₄⁺濃度に関しては、図8からわかるように、いずれの電圧条件においてもNH₄⁺濃度の減少は認められず、逆に向上傾向であった。陰極に板電を用いた場合にはNH₄⁺の分離は期待できないことが再現示された。NH₄⁺濃度の上昇については、これまでの通電による多孔質電極でのNH₄⁺の残存・蓄積の影響と考えられる。

一方、SO₄²⁻濃度の変化については、陰極に多孔質材を用いた際のNH₄⁺濃度の変化と同様で、その減少速度をめっき処理電極を用いた場合、および高い電圧を与えた場合（30V）において高くなっていることがわかる。陽極に多孔質材を用いることにより、SO₄²⁻（陰イオン）の分離が可能になることが示された。なお、陽極に炭素多孔質材等を用いた場合には電極溶解が懸念されるが、短時間の通電のためか、本実験ではそのような現象は観察されなかった。現時点では白金めっきによる不溶化の効果と推察されるが、詳細については今後さらに通電実験を行い検討する必要がある。

3. 多孔質電極を用いるイオンの分離・濃縮

イオン（NH₄⁺とSO₄²⁻）の分離において、多孔質電極を用いることの効果に関して、これまでの結果を参考にしてイメージ図を作成した（図10）。まず、NH₄⁺に着目すると、陰極に多孔質材を用いた場合（図10(a)), NH₄⁺は電気泳動により多孔質陰極の内部まで到達し、最終的に電極内部を含めその近傍に蓄積すると推察される。電極を多孔質体とすることにより、溶液が電極内部にまで浸透できるようになり、その結果、パルクにおけ
図9
SO₄²⁻濃度の経時変化（隔極に白金めっき多孔質材）

図10
イオンの分離・濃縮

一方、隔極に板材を用いた場合のNH₄⁺の挙動に関しては、図10(b)に示すように、電気泳動により緩やかな濃度勾配は形成されるものの、多孔質材を用いた場合とは異なり、対流や摩擦あるいは拡散等の影響によりセル内の濃度は均一化される傾向にあると推察される。このため、隔極を用いた実験においてNH₄⁺濃度は減少しなかったと考えられる。

SO₄²⁻については、電気泳動の速度はNH₄⁺のそれとは異なるが、電極セルにおける分離・濃縮の状況は、NH₄⁺の挙動と同じ傾向と推察される。本研究では特にNH₄⁺に着目して検討を行ったが、SO₄²⁻を含む他のイオンの分離・濃縮に対しても本装置の適用は可能と考えられる。

4. まとめ

本研究では、NH₄⁺等の分離と濃縮において多孔質電極を用いる電気泳動装置を適用することを提案し、その可能性および操作因子について通電条件等を含む変化させて回分実験を行い検討した。本研究で得られた知見は以下のとおりである。

1) 炭素多孔質材を隔極として用いて3V以上の電圧で通電することにより、電極セル内のNH₄⁺濃度は減少することがわかった。一方、炭素多孔質材を隔極として用いた実験では、SO₄²⁻濃度の減少が認められた。また、NH₄⁺とSO₄²⁻の濃度の減少速度は電圧に依存して大きく変化した。

2) 隔極に平板を用いた通電実験においてNH₄⁺濃度の減少は認められず、電気泳動の効果は期待できないことがわかった。また、NH₄⁺濃度の減少に対する電
環境技術

3) NH₄⁺濃度の減少速度は電流にも依存して変化した。物質移動に関連する電流制御も重要な操作因子であることがわかった。
4) 電極セル内のイオン濃度の減（分離・濃縮）における循環ポンプやスターラーによるセル内攪拌の影響は小さいことがわかった。
5) チタン粉末充填陰極を用いた実験におけるNH₄⁺濃度の減少速度は炭素多孔質陰極を用いた場合のそれに比較して低かった。
6) 白金めっきを施した炭素多孔質電極を用いた通電実験において、NH₄⁺やSO₄²⁻の濃度の減少速度は若干上昇した。これは、電流の増加が認められたから、白金めっきによる通電抵抗の減少の効果と考えられた。

謝辞：本研究の一部は（独）科学技術振興機構「群馬県地域集約型研究開発プログラム」の支援を受けて行われました。ここに記して謝意を表します。

参考文献
1) 古崎新太郎著：バイオセパレーション、コロナ社。4-5, 1993.
3) 井出哲夫編：水処理工学、技報堂出版、618-720, 1990.
4) 田中恒夫、尾崎益雄、黒田正和：リコの除去・回収における多孔質電極を用いる電気化学的プロセスの有効性。第34回日本水環境学会年会講演集、53, 2000.
7) 日本下水道協会：下水試験方法、1997.

A Rapid Separation of Ions from Aqueous Solutions
- Application of the Simplified Electrophoresis Reactor Using a Porous Electrode -

Tsuneo TANAKA, Takaumi YOSHIDA, Yukihoro SUGITO

ABSTRACT

A simplified electrophoresis reactor using a porous electrode was developed to rapidly separate ions from aqueous solutions. In this study, a stainless plate, a titanium plate, titanium powder packing, porous carbon material, and porous carbon material coated with platinum were selected as electrodes. An ammonium sulfate liquid was used as a testing solution. The concentrations of ions (NH₄⁺ and SO₄²⁻) in the electrophoresis cell were measured under various experimental conditions. The use of the porous carbon electrodes decreased the ion concentrations in the cell. The decreasing rates of ion concentrations changed, depending on the applied voltage and electric current. Additionally, the use of the porous carbon material coated with platinum was found to reduce the electrode resistance. In the experiment using the titanium powder-packing electrode, ion concentrations in the cell decreased gradually, however, changes of ion concentrations were not recognized in the experiments carried out using the plate electrodes. These results show that the use of porous carbon electrodes coated with platinum can enhance the performance of the electrophoresis reactor.

Key Words : porous electrode, electrophoresis, ion species, separation technology