特集2・騒音振動の計測、評価等の最近の動向

騒音評価手法の最近の動向

桑野園子

1. はじめに

騒音評価に関する最近の話題として、環境基準の評価法として1971年以降使われてきたLA0をL_{Aeq,T}に変更することが検討されていること、および、機械騒音の音質の改善をめざすアプローチがあげられようところではこの2つの話をとりあげ、紹介したい。

2. 環境騒音の評価

「騒音に係る環境上の条件について生活環境を保全し、人の健康の保護に資するうえで、維持されることが望ましい基準」として、1971年に閣議決定で、騒音に関する「環境基準」が定められた1）。現在、環境庁でこの環境基準を改定する作業が進められている2）、このたびの改訂の大きな方針は、レベル変動する騒音の評価法として、いまだ採用されてきた中央値（L_{50})に代わって、次式で定義される等価騒音レベル（Equivalent Continuous A-weighted Sound Pressure Level; L_{Aeq,T}）3）を用いるよう変更することである。

\[L_{Aeq,T} = 10 \log_{10} \left[\frac{1}{t_2-t_1} \int_{t_1}^{t_2} p_a(t) \, dt \right] \]

\(T \): 時刻t1に始まり時刻t2に終わる実測時間

\(p_a(t) \): A特性音圧

\(p_0 \): 基準音圧(20μPa)

2.1 L_{Aeq,T}の利点

L_{Aeq,T}には次のような利点があり5）、基本的な評価法としてL_{Aeq,T}を採用することにはほとんど異論はないように思われる。また、諸外国の例をみても、多くの国で環境基準がL_{Aeq,T}に基づいて定められている。

図1 L_{eq}と大きさの関係(周波数の周波数成分を含む音の場合)（難波・桑野6）

* 東京大学人間科学部環境心理学研究室
Sonoko KUWANO
（3）種々の音源に適用できること
図-1に示すように、一般に広帯域の周波数成分を含む多くの音源においてL_{Aeq,T}は主観的対象とよい照準を示し、五十嵐らも提案しているように、種々の音源に共通して適用できる基礎的評価法といえよう。
（4）種々の時間に対応が可能であること
L_{Aeq,T}のTの値はどんな値でもよく、秒数から数分、数日数えるまで、対象とする時間帯について測定が可能である。ただし、後述のように、時間のとり方にによって、L_{Aeq,T}の値は大きく変化するので、注意が必要である。
（5）測定、算出が容易であること
現場で容易に測定が可能であることも、騒音評価法として必要な条件であるが、積分騒音計が比較的容易に入手でき、L_{Aeq,T}の測定は大変容易になった。
2.2 L_{Aeq,T}の検討課題
上述のように、L_{Aeq,T}は基本的な騒音評価法として備えるべき条件をかなり満たしており、将来は、現在WECPNLやピークレベルなど異なる評価法が用いられている航空機騒音や新幹線騒音などにもL_{Aeq,T}を適用し、騒音騒音全体を1つの評価法で評価する方が望ましいと思われる。しかし、実際にL_{Aeq,T}を環境基準などに適用するにあたっては、下記のような検討課題があることも念頭におく必要がある。
（1）時間の設定
環境基準などの場合、対象とする時間（基準時間：ともに14時間）はふつう24時間やあるいは昼間15時間、夜間9時間などが採用される。この基準時間すべてにわたってL_{Aeq,T}が測定できれば、すなわち、基準時間と測定時間が同じであればよいが、一般には難しい。L_{Aeq,T}の値はレベルの高い事象の影響を大きく受けるので、実測時間をどのように設定するか慎重に検討することが必要であるう4,11,13,17）。このことは特に航空機騒音や鉄道騒音など間欠的に発生する騒音の場合で、騒音の変動特性に合わせて実測時間を設定する必要があると報告されている11,13,18）。L_{Aeq,T}における時間の問題は重要であるにもかかわらず、レベル変動パターンと関連づけた実
測時間、観測時間の設定方法など未解決の問題が多い。
（2）音源間の相違
自動車交通騒音、航空機騒音、鉄道騒音などの評価
に、$L_{A_{eq}}$ を採用するとき、当然その環境基準値を
いかに設定するかが大きな問題となる。昼間につい
ては会話妨害、夜間については睡眠妨害を考察して
環境基準値が求められることが多いが、果たして、
どの騒音に対しても環境基準値は同じレベルでよい
のか、あるいはヨーロッパ諸国などで採用されている
ように、鉄道騒音にはポーナスが与えられるのか
など、今後の検討課題であろう。なお、図 4 にも
みられるように、筆者らの行った実験室実験では
多くの場合、$L_{A_{eq}}$ の値が同じであっても、鉄道騒音
は自動車交通騒音や航空機交通騒音に比べて過小評価さ
れる傾向が認められている。しかし、必ずしも鉄道
騒音の過小評価がみられないという報告もあり、
慎重な検討が必要であろう。また、種々の音源から
構成される複合音環境を評価する場合においても、
各音源について同じウェイトでよいのかという問題
もあろう。
（3）A特性の限界
$L_{A_{eq}}$ では周波数補正にはA特性が採用されている
が、A特性は主に環境騒音にみられるように、広
帯域の周波数成分を含む音に関して、主観的影響
tいよいよい対応を示す。しかし、卓越した周波数成分を
含む音の場合はA特性は不適当なこともあり、
その適用限界について念頭におくことが必要であろ
う。
ISO532Bに基づくラウドネスレベル（LL_2）21,22
は、マスキングの非対象性、臨界帯域など聴覚の特性
を考慮に入れない方法で、図 4、5 に示すよう
に22,23、卓越した周波数成分を含む音についても、
$L_{A_{eq}}$ とは有効に大きいとよい対応を示す。従って、
卓越した周波数成分を含む音の場合には、LL_2 を適
用する方がよいであろう。ただし、ISO 532B は本来
定常音を対象としており、変動音には適用できない。
筆者は、1/3オクタープバンドごとのレベル変動音
の大きさ（specific loudness）がそのエネルギー平均
値で近似できるモデルに基づいて、1/3オクター
ブバンドごとにエネルギー平均値を求め，その値に基づいてラウドネスレベルを算出することにより，ISO 532Bをレベル変動音にも適用する方法（modified LLz）を提案し，主観音との間の対応関係を報告している21,22）。ただし，LLzは適用範囲が広いか，その算出は必ずしも容易ではないので，簡便なA特性と場合に応じて使い分けることができ望ましい。

3. 機械騒音の評価

一般に機械から発生する音は，騒音と受け止められることが多く，そのレベルの低減に努力が払われてきた。しかし，技術的，経済的にみて，騒音を全く除去しないレベルまでに低減することは非常に難しく，また，一般に騒音と受け止められる機械の音であっても，様々な情報が提供しており，必ずしもなければならないというものでないため，機械に何か異常があればまず音が変化することでわわれはそれを知ることができる。歩行者や音によって自動車が接近していてしようすることを察知する。さらに，これらの機械音のおかげであろうと邪魔な音がマスクされて聞こえないという利点もある。

このような理由から，特に機械騒音について，レベルの低減という量的なアプローチとともに，よい音質の音の追求が望まれている24-29）。

音質を改善するため，主観音の抑圧と対応のよい物理量を追求し，物理量を主観音を予測できることが望ましい。音質は次元の印象であり，それらを規定する物理的要因をも含む次元であるが，機械音の印象はほぼ安定して，「迫力因子」，「劣等性因子」，「美的因子」の3つの因子で代表される30）。この中で，「迫力因子」はL_{eq_{A}}, あるいはL_{LLz}で評価でき，また，周波数要因に基づく「劣等性因子」はsharpness31）で評価しうるといえよう。「美的因子」に関しては，さまざまな要因が影響し，1つの物理的要因では評価できない。しかし，不快さを減じるという意味での快適性には個人差は少なく，不快な印象を与える要因見出し，対策を講じるとともに，音質に良く，慣れやすい音の特性を探り，不快な音に対するマスキングノイズとして用いることも音環境の改善に効有であろう。一方，積極的に快適な音環境を求めようとすると個人差が大きく，いつでも，どこでも，誰にも共通する快適な音を見い出すことはほとんど不可能である。しかし，例えば，自動車の加速感にマッチした音やさわやかな印象を与えるエアコンの音など，対象を限定すれば，積極的に快適な音を求めることも可能であろう。

4. おわりに

現実の生活環境の中で音の評価を考える時，われわれは音だけを一理に考えているのではなく，視覚や嗅覚など他の感覚との相互作用を生じ，さらに，音源のもとも主観的な意味，過去の体験など非常に多くの要因が関与可能な可能性がある。例えば前述の鉄道騒音のポーナスにしても，周波数成分，時間パターンなど物理的要因とともに，鉄道に対するミステリアといった認知的要因の影響を無視することができない。今後，長時間の複合音環境の評価を考慮する上，これらの要因をいかに取り扱うかの検討も重要であろう。

引用文献
1）“騒音に係る環境基準について”，環境省，（1971）。
2）荒木真一， "騒音環境基準をめぐる状況"，騒音制御，21，70-72（1997）。
3）ISO 1996/1， "Acoustics: Description and measurement of environment: noise - Part 1: Basic quantities and procedures"，（1982）。
4）JIS Z 8731， "騒音レベル測定方法"，（1983）。
5）難波泰一郎，野村直子， "種々の変動音の評価方法としてのLeqの妥当性，並びにその用途範囲の検討"，日本音響学会誌，38，774-785（1982）。
7）環境庁大气保全局， "在来鉄道の新設又は大規模改良に際しての騒音対策の指針"，（1995.12）。
8）五十嵐寿一， "騒音に関する環境基準とその課題"，騒音制御，19，87-91（1995）。
9） "新幹線鉄道騒音に係る環境基準について"，環境庁告示，（1975）。
10） "航空機騒音に係る環境基準について"，環境庁告示，（1973）。
11） "騒音特性レベルの定義と問題点"，日本音響学会誌，52，125-130（1996）。
12） "主観評価からみた等価騒音レベルによる騒音評価と課題"，騒音制御，20，84-91（1996）。
13） "石井聖光， "L_{eq}による環境騒音の評価と課題"，騒音制御，20，69-77（1996）。
14） "種田政宏， "環境騒音の評価の要因と課題"，騒音制御，20，101-105（1996）。
15） "辻海宏， "環境騒音の評価の要因と課題"，騒音制御，20，82-88（1997）。
16） "林敏樹， "騒音計測におけるL_{eq}の意味と課題"，騒音制御，20，78-83（1996）。
17） "中西正一， "環境騒音のレベル分布に着目した場合のL_{eq}の実測時間"，騒音制御，21，114-120（1997）。

—601—
18) ŠÂ‹«‹Zp, 山下充康, "騒音工学", (コロナ社, 東京, 1988).