研究論文

糸染め染色排水の処理プロセスの性能評価と対策に関する研究

杉本 太* 磯野 禎三*

要 目
糸染め染色排水の処理プロセスの処理性能を調べた結果、1日あたりの除去された溶解性のCOD量は平均して凝集処理工程で約50%、活性汚泥処理工程で約70%除去された。一方、非通過塊の指標を用いて、当プラントの処理能力を調べた結果、溶液性のCOD、SSおよび過剰の透視度の各水質項目は、それぞれ対数正規分布を示し、年間を通じた水質変動のバラツキに多少偏りはあるが、効率的に処理されていることがわかった。

また、染色排水の模擬排水を用いて、凝集沈殿処理におけるCOD成分の処理効率を調べた結果、界面活性剤や酵酸などは、この工程ではほとんど処理されなかった。

キーワード：染色排水、凝集沈殿法、活性污泥法、模擬排水

1. 緒 言
兵庫県西脇市、多可郡をはじめとする播州繊産地は、綿、レーヨン等の素材を主体とした糸染め染色産地として形成されている。当産地から排出される染色排水は、反応染料を用いて浸染法による染色を行う性格から、排水成分には染料や硫酸ナトリウム、炭酸ナトリウムなどの無機成分、界面活性剤、油剤などの助剤が含まれ、CODが高く、着色のある処理困難な排水である。実際に染色排水の処理に利用されている方法としては、硫酸鉄（II）を凝集剤に用いた凝集沈殿と活性汚泥法を併用した方法が採られており1,2), COD除去を目的とした処理が中心としてなされている。

近年、繊維製品の多品種化、小ロット化、またそれに関連して使用される繊維染剤も多種多様化3)しており、その処理も困難なものが多くなっている。このため排水の水質や水量変動による基準値をクリアできない場合もあり、その処理の対応に追われているのが現状である4).

そこで、本研究では、現状の染色排水の処理が行われている処理プラント（K処理場）の原排水、凝集沈殿処理水および活性汚泥処理水の水質測定を1年間にわたって月に1回の頻度で行い、各工程における処理能力の考察を試みた。また、特に凝集沈殿処理工程における処理効率については、染色排水の模擬排水を用いて、成分変化によるCOD除去率への影響ならびに問題点、対策についても検討を試みた。

2. 実 験
2.1 染色排水の実処理場での調査
染色加工後の実排水の処理状況の調査においては、西脇市内のK処理場を対象に行った。この処理場の原排水は、以下の糸染め染色工程（綿、レーヨンなどの反応染色）から排出された混合液である。

原水→精錬・漂白→染色→酸洗い・水洗→
→ソーピング処理→オイリング処理

K処理場での処理フローと調査での採水箇所を図ー1に示す。K処理場では、流入排水量が約2200㎥/日であり、凝集沈殿で凝集剤の添加量1200～1500mg/ℓ（FeSO4•7H2Oとして）、反応時間15分（急速攪
拡：30 rpm, 7.5分, 緩速拡拌：15 rpm, 7.5分）および凝集沈殿槽滞留時間2.1時間の処理がなされ、その後に活性汚泥処理（エアレーション8.3時間、曝気槽内MLSS濃度約3100 mg/l）が行われている。

水質測定は、原排水ならびに各処理工程の処理水の溶解性COD濃度（No.5Cのろ紙によるろ液）、pH、透視度およびSS濃度を測定した。また、透視度はSS成分に起因する影響を抑えるため、SS成分をろ別してろ液を測定した。活性汚泥処理水は最終沈殿槽から放流する際に採取したもので、この場合のSSは沈殿上澄みの懸濁成分濃度である。各水質項目の測定法は、JIS K0102を基に行った。

2.2 凝集沈殿処理工程における処理効率に関する実験

まず、COD濃度の異なる染色排水100 mlに硫酸鉄（II）を0~2000 mg FeSO₄・7H₂O/lの範囲の種々の濃度で添加してpHを11に調節し、凝集処理（急速摺拌：120 rpm, 3分、緩摺拌：60 rpm, 10分）を行った後、沈殿をNo.5Cのろ紙でろ別して動液のCODを測定し、COD除去率を算出した。

次に、排水成分によってCOD除去の難易があると思われるので、染色の模擬排水を用いて排水の成分によるCOD除去率の影響について検討した。模擬排水は、一般的な反応染色のパターンより、表1に示す組成で調製し、水洗しを考慮してさらに5倍および10倍に希釈して用いた。分析操作は、模擬排水100 mlに凝集剤の硫酸鉄（II）を所定量（1600 mg FeSO₄・7H₂O/l）添加し、pHを0.5NのNaOHで約11に調節後、急速摺拌120 rpm, 3分、緩速摺拌60 rpm, 10分の条件で摺拌を行い、生成した沈殿物をNo.5Cのろ紙でろ過後、ろ液を200 mlにした。この溶液を検液としてCOD濃度を測定した。さらに、各薬剤についても同様にして凝集沈殿処理を行い、CODの除去率を測定した。

<table>
<thead>
<tr>
<th>表1 模擬排水の組成</th>
</tr>
</thead>
<tbody>
<tr>
<td>(精錬・漂白)</td>
</tr>
<tr>
<td>過酸化水分素 (30%)</td>
</tr>
<tr>
<td>水酸化ナトリウム</td>
</tr>
<tr>
<td>界面活性剤 (ノニオン) ノイゲン H C</td>
</tr>
<tr>
<td>ポリカルボン酸系 ネオレート PLC-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(染色)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. I. Reactive Blue 221</td>
</tr>
<tr>
<td>C. I. Reactive Yellow 145</td>
</tr>
<tr>
<td>C. I. Reactive Red 223</td>
</tr>
<tr>
<td>無水硫酸ナトリウム</td>
</tr>
<tr>
<td>無水炭酸ナトリウム</td>
</tr>
</tbody>
</table>

(酸洗い)

| 酢酸 (90%) | 3.0 |

(オーリング処理)

| 界面活性剤 (ノニオン) ノイゲン HC | 1.0 |
| 無水炭酸ナトリウム | 1.0 |

*：第一工業製薬KK，**：日華化学KK
表2 染色排水の水質分析結果

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CODs (mg/l)</td>
<td>301</td>
<td>306</td>
<td>302</td>
<td>271</td>
<td>323</td>
<td>348</td>
<td>413</td>
<td>330</td>
<td>371</td>
<td>308</td>
<td>344</td>
<td>471</td>
<td>341</td>
<td>55.5</td>
</tr>
<tr>
<td>SS (mg/l)</td>
<td>43.9</td>
<td>45.8</td>
<td>42.6</td>
<td>66.2</td>
<td>20.0</td>
<td>55.0</td>
<td>46.7</td>
<td>27.6</td>
<td>20.9</td>
<td>29.6</td>
<td>69.0</td>
<td>117.6</td>
<td>48.7</td>
<td>26.9</td>
</tr>
<tr>
<td>pH</td>
<td>10.4</td>
<td>10.3</td>
<td>10.3</td>
<td>10.3</td>
<td>10.5</td>
<td>10.6</td>
<td>10.5</td>
<td>10.9</td>
<td>11.8</td>
<td>10.4</td>
<td>10.4</td>
<td>10.5</td>
<td>10.5</td>
<td>0.4</td>
</tr>
<tr>
<td>透視度* (cm)</td>
<td>3.2</td>
<td>3.3</td>
<td>2.8</td>
<td>3.7</td>
<td>3.2</td>
<td>2.5</td>
<td>2.4</td>
<td>3.3</td>
<td>2.5</td>
<td>3.1</td>
<td>2.2</td>
<td>1.8</td>
<td>2.8</td>
<td>0.5</td>
</tr>
</tbody>
</table>

凝集処理 CODs (mg/l) | 156 | 143 | 165 | 177 | 158 | 215 | 179 | 199 | 143 | 163 | 207 | 174 | 23.8 |
| 処理水 pH | 9.6 | 8.5 | 9.3 | 9.4 | 9.5 | 9.8 | 9.6 | 9.9 | 10.8 | 9.6 | 9.4 | 9.7 | 9.6 | 0.5 |
| 透視度* (cm) | 20.8 | 16.5 | 23.5 | 21.5 | 16.0 | 15.7 | 14.5 | 16.6 | 10.4 | 11.6 | 19.2 | 13.4 | 16.6 | 4.0 |

活性污泥 CODs (mg/l) | 54.8 | 52.6 | 57.6 | 53.2 | 58.4 | 55.4 | 61.2 | 47.8 | 66.8 | 50.0 | 69.4 | 69.8 | 58.1 | 7.4 |
処理水 pH	18.4	23.9	29.8	53.3	5.3	25.0	10.0	5.0	12.4	5.2	23.5	12.6	18.7	13.9
(放流水) pH	8.1	8.4	8.3	8.6	8.4	8.5	8.3	8.5	8.9	8.2	8.3	8.3	8.4	0.2
透視度* (cm)	26.3	22.2	20.0	16.6	20.4	14.6	19.6	22.3	13.8	24.0	10.8	15.6	18.9	4.6

Av.：平均値，σn-1：標準偏差，CODs：溶解性の COD 濃度 *：原排出および各処理工程の処理水のろ過水の値

3. 結果と考察

3.1 排水処理プラントの処理性能

染色排水処理の1年間の水質結果を表2に示す。原排出のpHは、年間を通じて大きな変動は見られないが、溶解性のCODやSS濃度は、その変動が大きい。これは、各作業における染料、助剤の使用量や扱っている素材の違いから見られる季節的な変化によるものと思われる。1日あたりの溶解性CODの負荷量は、原排出で750kg/日、凝集処理出水で383kg/日、活性汚泥処理で128kg/日であり、各工程での1日あたりのCOD処理量は、凝集処理工程で約50%、そして活性汚泥処理工程で残りの約70%が除去されていることがわかった。なお、このような処理は、流入する高負荷排水の時間的な水質変動および水量変動が問題であり、それらの対応が要求される。

透視度は、原排出の場合は、年間を通じて約2〜4cmの範囲にあり、表2からもわかるように、凝集処理工程でかなり改善されている。しかし、活性汚泥処理後の透視度は、凝集処理に比べて大きな変化はなく、放流水は逆に凝集処理後の値に比べ悪化している場合もある。これらは操作の復帰などによるものと思われる。

また、この処理工程における溶解性COD、SSおよびそれらの溶液への透視度の非超過率を調べた。この値は、それぞれの水質項目の処理効率を知るための指標であり、一般的に水質モニタリングの多くは、正規分布または対数正規分布のどちらかに従い、代表値と非過

過度率を対応させて、確率紙または対数確率紙にプロットすると直線関係が得られる。そこで、それぞれの水質結果の非超過率を求めた結果、図2-2の右より示されるように対数正規分布を示すことがわかり、また、年間を通じた水質変動のバラツキに多少偏りがあるものの、排水は効率的に処理されていることがわかった。つまり、COD濃度において図2-2よりより99%の確率の場合でも、放流前の活性汚泥処理水の非超過確率値は、75.8mg/lであり、当処理施設のCODの排出基準値である

図2-2 原排出および各処理水の溶解性CODの非超過確率プロット
□：原排出 △：凝集処理水 ○：活性汚泥処理水
80~100 mg/lに対して低い値を示している。また、SSについても同様に、図-3より99%の確率の場合でも非超過確率値は、放流前の活性汚泥処理で72.4 mg/lであり、SSの排出規制値の70~90 mg/lに対して規制範囲内であり、十分な処理能力を持ったプラントである。なお、ろ過水の透視度については、図-4より80%の確率においても、活性汚泥処理の非超過確率値は20cm以下であり、SSに起因する以外の着色成分は、現状でも残存しており、その向上はあまり期待できないことが示されている。

次に各項目の相関について、実数値の相関よりも対数値の関係係数の値の方が大きかったので、各測定結果の対数値の相関関係を表3に示す。表3は各工程でのCOD、pH、SSおよび透視度の各々2項目間の関係を示している。

まず、CODと透視度の関係において、表3より原排水のCOD濃度と透視度ならびに活性汚泥処理のCODと透視度にはそれぞれ-0.880と-0.724と高い相関関係が、同一の排水および処理水間において、COD値の高低により透視度の良否の目安になることがわかる。一方、凝集沈殿処理水の場合、処理後の排水は全体的に緑色を帯びており、Fe(II)

表3 染色排水および処理水の各水質測定値（対数値）間の相関関係

<table>
<thead>
<tr>
<th>排水および処理水</th>
<th>水質測定キー</th>
<th>原排水CODs</th>
<th>Log CODs</th>
<th>Log SS</th>
<th>Log pH</th>
<th>Log透視度</th>
<th>凝集沈殿処理水中CODs</th>
<th>Log CODs</th>
<th>Log SS</th>
<th>Log pH</th>
<th>Log透視度</th>
<th>活性汚泥処理水CODs (放流水)</th>
<th>Log CODs</th>
<th>Log SS</th>
<th>Log pH</th>
<th>Log透視度</th>
</tr>
</thead>
<tbody>
<tr>
<td>原排水</td>
<td></td>
<td>0.319</td>
<td>0.333</td>
<td>-0.880**</td>
<td>0.747**</td>
<td>0.372</td>
<td>-0.551</td>
<td>0.675*</td>
<td>-0.305</td>
<td>-0.041</td>
<td>-0.378</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.494</td>
<td>-0.503</td>
<td></td>
<td>0.259</td>
<td>-0.347</td>
<td>0.314</td>
<td>0.359</td>
<td>0.580</td>
<td>-0.394</td>
<td>-0.372</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.200</td>
<td></td>
<td></td>
<td>0.472</td>
<td>0.839**</td>
<td>0.620*</td>
<td>0.252</td>
<td>-0.308</td>
<td>0.768*</td>
<td>-0.304</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.598</td>
<td>-0.281</td>
<td>0.347</td>
<td>-0.833**</td>
<td>0.012</td>
<td>0.146</td>
<td>0.620*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>凝集沈殿處理水</td>
<td></td>
<td>0.578</td>
<td>-0.297</td>
<td>0.520</td>
<td>-0.014</td>
<td>0.318</td>
<td>0.434</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.535</td>
<td>0.273</td>
<td>-0.362</td>
<td>0.515</td>
<td>-0.283</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.208</td>
<td>0.596</td>
<td>-0.349</td>
<td>0.109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>活性汚泥処理水</td>
<td></td>
<td>0.158</td>
<td>0.050</td>
<td>-0.724**</td>
<td>0.079</td>
<td>-0.371</td>
<td>-0.348</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

有意水準：p=0.05（*）, p=0.01（**）, CODs：溶解性のCOD濃度, 透視度：原排水および各処理工程の処理水のろ過水の値

--- 823 ---
による還元気味の影響、または色相のズレからそれらの相関値は－0.297と低かった。

原排水、同排水と凝集沈殿処理水および活性汚泥処理水、活性汚泥処理水間のSS濃度と透視度の関係において、その相関係数は、それぞれ－0.503, －0.314, －0.372, －0.371と低い結果となった。このように両者の相関値が低いのは、透視度はろ過水を対象に測定したものであり、未反応の着色成分とCOD成分である成分の変動による影響が大きいためと考えられる。しかし、SS成分を除去しない場合の通常のJISによると測定の場合の透視度は、年平均原排水2.3cm、凝集沈殿処理水4.0cm、活性汚泥処理水11.1cmと普通したものでありながら悪かった。したがって、COD除去に加えて、SS除去を合わせた着色汚染対策が必要な課題になる。

3.2 凝集沈殿処理工における処理効率について

3.2.1 実排水を用いたCOD除去率におよぼす初期COD濃度の影響

3.1では実際の処理施設の排水の処理効率について検討を行った。この節では特に凝集沈殿処理について取り上げ、原排水のCODの除去率におよぼす硫酸鉄（II）の添加量の影響について検討し、その処理効果を調べた。

凝集沈殿後ろは瓶のCOD除去率におよぼす硫酸鉄（II）の添加量の影響を図－5に示す。硫酸鉄（II）の添加量の増加とともにCODの除去率は増加するが、凝集剤を一定以上過剰に加えても、初期のCOD濃度に関係なくCOD除去率は変化せずに50％程度しか除去されないことがわかった。また、COD除去率の一定値に達するのに必要な凝集剤の添加量は、初期のCOD濃度が高くなるにしたがって多くなる。したがって、CODの負荷が大きくなる場合、スラッジの生成量は増加することが、添加する凝集剤を増加させるとが必要である。

3.2.2 染色工における凝集排水のCOD除去率の影響

凝集処理によるCOD除去率の影響について検討した結果を図4に示す。各工程の排水において、精錬・漂白工程では50～60％程度、オイリング工程では45～50％が除去されているものの、酸洗いやソーピング工程の排水では、ほとんどCOD成分の除去がされていないことが明らかにされている。

3.2.3 染料および染色助剤のCOD除去率の影響

各染料の凝集沈殿処理によるCODの除去率の影響を図5に示す。過酸化水素水は鉄（II）による還元によりCOD値は低下するものの、非イオン界面活性剤（ノイゲンH-C）や酢酸などは、ほとんど処理されていないことがわかった。美坂は染色排水
の凝集沈殿処理で、排水成分の分子量によるCOD除去率の変動について検討し、凝集処理では分子量104以下のCOD成分はほとんど除去されないことを見出した。このような成分が時間的に負荷変動して流入する排水は、処理を行っても規制値をクリアできない可能性がある。一般に、負荷変動対策としては、処理装置の容量を十分大きくして、最大負荷に対しても処理水の水質を保証できるように保つ方法や処理装置の前に原排水の一時貯留槽を設けて、負荷の均一化をはかる方法などの対策がとられている3)。しかし、本研究の結果によると、COD成分を効率的に処理するには、排水成分を十分に把握し、化学的処理や生物的処理を受けやすいものなど区別して、排水成分に合わせた処理を行うことが必要であるといえる。

なお、染め染色工程は2.1に示したように、各工程を経て排水が排出されている。したがって、精錬、漂白から染色、オイリングに至るまでのすべての排水を混合するのでなく、近代活性化の多量に含まれている精錬工程からの排水は活性污泥処理を中心に行い、一方、染色やオイリング分野は凝集処理へ送るようにして処理工程の見直しを行うことにより、処理効率の向上が図れるものと考えられる。

4. まとめ

現状の染色排水の処理が行われている処理プロセスの凝集沈殿一活性污泥処理工程における処理水の水質測定を行い、各工程における処理能力を調べた結果、溶解性のCOD濃度を基準にして、平均して凝集処理で約50％、活性污泥処理工程で残りの約70％が除去されていた。こういった処理は、流入する高負荷排水の時間的な水質変動や水量変動に応じて、両処理工事の処理効率を変化させることで、平均的な処理水の水質変動を打ち消すための手法として導入されているものである。

また、COD、SSおよび過濁水の透視度の処理効率を調べた結果、非超過率を調べた結果、それぞれの水質は、対数正規分布を示し、また、年間を通じた水質変動のパラツキに多少の偏りがあるものの、排水は効率的に処理されていることがわかった。

凝集沈殿処理工程における処理効率について、染色排水の実排水、模擬排水さらに染色助剤を対象に、排水成分によるCOD濃度の除去率の影響について検討した結果、界面活性剤や酵酸などはこの処理工程ではほとんど処理されておらず、したがって、COD成分をより効率的に処理するためには、排水成分を十分に把握し、化学的処理や生物的処理など、その成分主体の処理を行うことが必要である。

一方、最近の着色排水の脱色処理について、和歌山市の着色污泥処理条例にもあるように、染色排水の脱色化が今後主体的な処理になると思われる。とえば、過濁水試料の透視度の測定結果から、現状の処理にろ過処理を加えるだけでも放流水の透視度などの水質は改善されており、実際の処理工程に適当なろ過装置を併用すれば、コスト的負担も少ないと推計される。また、既存法を利用すれば、フェントン酸化もしくは、「PACTプロセス」と呼ばれる粉末状の活性炭を活性污泥槽に投入する方法なども、COD量の除去のみならず脱色処理も効果的に行え、有用な方法の1つであると考えられる。

最後に本調査研究につけ試料の提供を頂きました兵庫県繊維染色工業連合会共同排水処理場長の山添昌樹氏に心より感謝いたします。

参考文献
2) 渡邉孝夫, ピニルスルホン型活性染料一染色废水の脱色について, 福岡工業試験所, 15, 105 (1980).
3) 関西県中小企業振興公社兵庫県経済産業センター編, 兵庫県の地場産業, 地場産業実態調査報告書(平成10年版), (1997) p.48, 55.
4) 杉本太, 中野恵之, 磯野拓二, 潮川芳孝, 畑崎俊明, 染色
Studies on the Performance and Counterplan of the Treatment of Yarn Dyeing Wastewater

Futoshi SUGIMOTO, Teizo ISONO

ABSTRACT

We studied on the performance of the treatment of yarn dyeing wastewater. The soluble COD was removed in average in an amount of about 50% in the coagulation-precipitation process, and further removed in an amount of about 70% of the remaining soluble COD in the activated sludge process.

The monthly data of soluble COD, SS and transparency in raw wastewater and treated wastewater during a year were statistically analyzed in terms of non-exceeding probability, and the result was represented as a logarithmic normal distribution. It was found that the wastewater was efficiently treated with this treatment plant, although the statistical figures showed some scatter.

Moreover, the treatment efficiency of COD in the coagulation-precipitation process was investigated by the synthetic dyeing wastewater. As a result, the surfactant, acetic acid and the like were found to be hardly removed in this process. Therefore, it is made evident that when the wastewater with the components to be hardly removed flows into the treatment plant, it is necessary to perform treatments suitable for wastewater components, including chemical and/or biological treatments.

Key Words: dyeing wastewater, coagulation-precipitation process, activated sludge process, synthetic wastewater