日本ロボット学会誌
Online ISSN : 1884-7145
Print ISSN : 0289-1824
ISSN-L : 0289-1824
論文
ツァリス統計に基づく変分オートエンコーダによるスパースな潜在空間の獲得
綿貫 零真小林 泰介杉本 謙二
著者情報
ジャーナル フリー

2022 年 40 巻 3 号 p. 251-254

詳細
抄録

In machine learning, transforming features into a low-dimensional latent space has advantages such as speeding up learning and suppressing overfitting. In addition, when each feature in the latent space is independent and latent space is sparse, the overlap of information between features can be reduced. Such a sparse latent space can be useful for acquiring a policy of robot with high-dimensional sensors like a camera. To obtain the sparse latent space, a variational autoencoder based on Tsallis statistics is rearranged and analyzed. From vision information on a car racing simulation, the proposed method, which is with a more natural implementation than the previous method, can extract the sparse latent space appropriately.

著者関連情報
© 2018 日本ロボット学会
前の記事 次の記事
feedback
Top