解説

機械加工デスクトップマイクロファクトリ
Desktop Machining Microfactory

田中 誠* 谷川 民生* 前川 仁* 産業技術総合研究所（旧機械技術研究所）
Makoto Tanaka*, Tamio Tanikawa* and Hitoshi Maekawa* National Institute of Advanced Industrial Science and Technology

1. はじめに

近年、携帯電話、ノートパソコンといった電子機器の小型化が進み、それに使用される各部品は更なる微小化を求められている。製品サイズが小型化する一方、それらの部品を加工、組み立ての生産ラインはそのほとんどが、依然従来のサイズのままである。仮に、生産設備が小型になると、省エネルギー、省スペースおよび省資源化といったことがまず期待される。その他にも、温度、湿度といった環境の制御性が向上することから、安定に高精度の加工ができることが、生産ラインの汎用性の向上により、多品種の生産に容易に適用できるといった利点も考えられるであろう [1]。このようなマイクロファクトリの概念が1990年に機械技術研究所より提案され、1994年度より、産業科学技術研究開発制度「マイクロマシン技術」の中で取り上げられたことで、機械技術研究所や各民間企業において、マイクロファクトリの構成要素機器の開発を目的とした研究開発が本格化された。

機械技術研究所では、1996年に小型工作機械第1号である「マイクロ旋盤」の実現に成功し、大幅な省エネルギー効果が実現できることを実証した。これを皮切りに、そのコンセプトを実現化するため、機械加工を中心とした機械技術研究所版マイクロファクトリを構築し、超小型工作機械群と搬送・組立マニピュレータを組み合わせたデスクトップタイプ（卓上型：70×50 [cm]）の超小型工場、すなわち、機械加工マイクロファクトリを構築し、これにより、超小型の工房を試作した。

2. マイクロファクトリと試作例

回転軸を挿入し、カバーの装着を行った。

3. マイクロファクトリの構成要素機器

3.1 マイクロ旋盤
マイクロ旋盤はマイクロファクトリ最初の実証モデルとして1996年に開発された。外形寸法は長さ32 [mm]、奥行き25 [mm]、高さ30.5 [mm]、重量は約100 [g]で極めて小型・軽量である。自動機構に圧電素子を用いた摩擦駆動式インチリームステージを採用することで超小型化を実現した。直径2 [mm]の真鍮材料を最小径60 [μm]まで、表面粗さ最大1.5 [μm]、真円度2.5 [μm]の精度で加工できる。主軸モータの定格出力は1.5 [W]であり、小型化により、精度を低下させることなく、大幅な省エネルギーを達成できることを実証した。マイクロ旋盤では、100 [μm]と500 [μm]の直径を持つ回転軸を製作した。

3.2 マイクロフライス盤
マイクロフライス盤は、長さ、奥行きともに最大約170 [mm]、高さ102 [mm]の大きさである。主軸モータは定格36 [W]、市販のミニチュアエンドミルを直接装着でき、加工能力は高い。例えば、真鍮、ステンレスなどに2 [mm]程度までの穴あけ加工が可能である。極小型主軸受の試作において、マイクロフライス盤は外径900 [μm]、内径700 [μm]の軸受ハウジングの加工を行った。製作工程としては、真鍮の板状の上面フライス加工を行い、長さ1.3 [mm]のハウジング外形を切り出した後、回転軸用の径200 [μm]の穴あけを行った。その後工作物の上下を反転させ、700 [μm]のハウジング内径の穴あけ加工を行った。

3.3 マイクロブレーキ
マイクロファクトリにおいてブレーキ機は直径約1 [mm]のハウジングカバーを製作する。現状のブレーキ加工ラインでは、このようなミリサイズ部品の加工さえも100 [kN]（10 [t]）以上のプレス機械を使用している。しかし、加工に必要な力（所要力）は1 [kN]程度と見積もられ、能力過剰な状況にあることはない。所要力に応じてブレーキ構造を小型化すれば、省エネルギー・省スペース化だけでなく、金型の軽量化による高速化および騒音・振動の低減といった効果も期待される。

図3 は加工中の材料（板厚120 [μm]のりん鋼）と加工した部品である。加工数は毎分60に設定した。加工精度は打ち抜き・曲げともに十分であった。加工中の消費電力は、モータ制御用の電気回路をすべて含めて約40 [W]と非常に少なく、小型化による省エネルギー効果を確認できた。また、騒音・振動も大型機に比べ大幅に小さくなれた。マイクロブレーキ機において、ミリサイズ部品を高能率かつ十分な精度で加工が行えることが確認できた。その高い生産性を生かした高産型マイクロファクトリを構築できるものと期待される。

図4 マイクロブレーキ機における加工材料と加工部品

4. マイクロ搬送アーム
マイクロファクトリにおけるワーク搬送および簡単な組立作業を目的として、最大長さ100 [mm]のマイクロ搬送アームを開発した。本アームの開発においては、まずマイクロファクトリで使用するために求められる以下の条件：

(1) マイクロファクトリに適合するコンパクトな機構
(2) 先端の動作領域が極力広く、広範囲な搬送が可能
(3) 高い剛性を有し、正確な駆動制御が可能
(4) 先端のワークアクセスは上方のみからとし、それを実現する範囲で極力機能的に単純な機構に留意した。

以上の要求を最大限に満足するため、図4に示す構造を適用した。アームは最大長を約100 [mm]に設定した。アームの基本構造は水平・垂直構造を組み合わせた機構であり、アーム先端に関する3 並進自由度および駆動回転の1 回転自由度の合計4 自由度を備える。

アーム中間部は、4 本のリンク（リンク長50 [mm]）からなるベンタグラフ形のパラレルリンク機構ABCDにより構成される。またアーム基部には、3 基の減速機付DC デオモータM1、M2、M3（（株）ハーモニックドライプシステムズRH-5A、定格トルク0.29 [Nm]、定格速度5.8 [rad/s]、
定格出力 1.7 [W], エンコーダ分解能 0.0023 [deg] を配置する。2 基のサーボモータ M1, M2 は関節 A においてリンク AB, AC をそれぞれ駆動する一方、関節 B, C, D は受動関節である。ここでリンク AB, AC を同方向に駆動すると、関節 D は A を中心として接線方向に運動する。一方、各リンクを逆方向に回転するとパラレルリンク機構が伸縮して関節 D は半径方向に運動する。このような接線・半径方向の運動を組み合わせることにより、関節 D を水平面内で移動することができる。さらにリンク DE にはリニア型超音波モータ M4（40 [mm], ストローク 20 [mm], エンコーダ分解能 42 [μm]) を搭載し、その直動運動によりアーム先端 E を鉛直方向に駆動する。

またアーム先端の鉛直軸回りの姿勢を制御するために、サーボモータ M3 の出力を 2 本のタイミングベルト（ピッチ 1 [mm], ピッチ幅 160 [mm]) および 3 基のブーリ（ピッチ幅 60 [mm]) を介して関節 A から B を経由して D に伝達し、リンク DE を回転方向に駆動する。ここで関節 A, B, D でタイミングベルトを巻掛ける 3 基のブーリのピッチ円はそれぞれ等しいため、サーボモータ M3 の出力軸とリンク DE の鉛直軸回りの角度は常に一致する。その結果、サーボモータ M1, M2 を駆動してアーム先端 E が水平面内で任意に運動する場合であっても M3 を駆動しない限りアーム先端姿勢は一定である。一方、アーム先端の並進・回転方向への駆動は相互に干渉しない。

一方、関節 A において 3 基のサーボモータ M1, M2, M3 の出力軸を 2 本の中軸軸と 2 本の中空軸を組み合わせて同軸構成することにより、2 連のリンク ABD, ACD の基部関節軸は一致する。このため、アームは関節 A を中心として機構の制約を受けることなく無制限に回転することができる。実際の使用においては、超音波モータ M4 やアーム先端に搭載するデバイスへの配線・配管による制約が存在するので、アーム先端が到達可能な領域はパラレルリンク機構の最大軸である約 100 [mm] を半径とする円周内となる。これに対してアーム基部の設置面積は 50 × 70 [mm] であり、本アームではその占有面積に比較して広い動作領域を実現している。また位置決め精度は 10 [μm] を実現し、アーム先端に搭載するノズルデバイスによる負圧により、ワークを吸着する。負圧はコンプレッサから空気圧 (0.45 [MPa]) をエジェクタに給供して発生し、吸着圧力（ゲージ圧）は最大 -90 [kPa] である。

3.5 2 本指マイクロハンド

微小部品組立には、箸の操作を模倣した 2 本指マイクロハンドを用いるのが望ましい。高精度でかつ自由度動作実現のため、パラレルメカニズム機構を応用した、マイクロファクトリーという小型システムに組み込むためハンド自身の小型化を検討する必要がある。

ここで、小型化を検討する上で、箸を模倣する 2 本指動
はその現象は見られなかった。ただし、耐久性に問題がある可能性は否定しない。
この小型並進 3 自由度機構を二つ直列に組み上げることで、各操作を模倣した 2 本指ハンド機構が実現できる [5]。ただし、ハンド全体が極端に短くなれるようにマイクロファクトリにおける 2 本指マイクロハンドは、各並進 3 自由度機構（モジュール）を折り返して組み付けて図 7 に 2 本指マイクロハンドの概略図を示す。ハンド本体は外径 φ48 [mm]、高さ 65 [mm] の円柱の形状であり外側のモジュールが操作対象物の位置決めに寄与する運動を行い、内側に挿入するモジュールが把持、回転といった操作対象物の細かい操作を行う運動を生成する。各モジュール内には駆動用圧電素子を 3 本使用しており、その伸縮量は 32 [μm] である。このときの実測した作業範囲は約 100 × 100 × 30 [μm] で、移動の分解能 1 [μm] 以下を実現している。さらに大きな対象物を扱うためには、長い圧電素子に置き換えることで容易に対応できる。また頭微鏡下のステージ機構（可動領域 30 × 30 × 15 [mm]）との組み合わせにより、広範囲で高精度な位置決め操作を可能としている。

4. まとめ
マイクロファクトリを具現化することで、省エネルギー、省スペースおよび省資源化といった特長を実証できた。一方で、生産設備の小型化による操作性の悪さなど、欠点も明らかにされつつある。今後、対象生産物に見合ったシステム構成の最適な大きさ、および柔軟性等にも特徴のある、マイクロファクトリが新産業創出への足がかりになるものと期待したい。

参考文献