特集 磁気冷凍

鉄道用車両空調向け室温磁気冷凍システムの検討

Study of Magnetocaloric Refrigerator on Room Temperature for Air Conditioners of Railway

宫崎 佳樹*1（正員），脇 耕一郎*2，荒井 有気*1，水野 克俊*1，
古澤 佳祐*3，長嶋 賢*1，平野 直樹*2，高田 裕章*3

Yoshiki MIYAZAKI (Mem.), Koichiro WAKI, Yuuki ARAI, Katsutoshi MIZUNO,
Keisuke YOSHIZAWA, Ken NAGASHIMA, Naoki HIRANO, Hiroko TAKATA

This study aims at practical use of a cooling technology using a magnetocaloric effect for the purpose of energy saving of air conditioners of railway. A method to cascade magnetocaloric materials having the different temperatures is suggested to obtain an operating temperature required by air conditioner because a work point of the magnetocaloric material is limited to temperature around the Curie point of the material. La[Fe0,86Co0,06Si0,10]13 has an operating temperature that is lower than Gd. Accordingly, a magnetocaloric refrigerator system which has a magnetocaloric material of La[Fe0,86Co0,06Si0,10]13 is reported in this paper.

Keywords: magnetocaloric, air conditioner, railway, Gd, La[Fe0,86Co0,06Si0,10]13.

1 緒言

鉄道車両に搭載される車両用空調装置は、利用客に快適な空調を提供する重要な要素であり、車内の快適環境を維持するための機能が要求される。車両用空調装置には蒸気圧縮式冷凍が用いられているが、駅の発着とともに乗客の出入りがあり、乗客数が変動をもつ。さらに空調機の搭載スペースの制約、および常時車内換気を行わなければならないなどの特殊性から、その COP(Coefficient of Performance)は家庭用のそれに比べても低い値となっている[1]。一方で、昨今の電力事情や環境問題から、省エネルギーなどの環境負荷低減に対する要求は一段と厳しくなっている。これまで蒸気圧縮式冷凍機の冷媒として使用されてきたフロンや代替フロンのオゾン層破壊、温室効果への早急な対応が必要である。

そこで本研究では、鉄道車両空調の省エネルギーを目的とし、現行の蒸気圧縮式冷凍に変わり得る冷房技術として、磁気冷凍効果を用いた冷凍技術の開発に取り組んでいる。磁気作業物質の動作点は、その物質のキュリー点付近の温度に限られるため、空調に要求される動作温度を得るためには、動作温度の異なる磁気作業物質を複数組み合わせる方法が提案されている。このような材料候補として、本稿では室温で一般的に用いられる磁気作業物質であるガドリニウムと、ガドリニウムに比べて動作温度が低温度側に、かつ大きく磁気エントロピー変化を有する LaFe 系材料を、円環状パッパ配列磁石を用いた磁気冷凍システムに搭載して性能評価を行ったので紹介する。

2 磁気冷凍効果と AMR

磁気冷凍とは、ある種の磁性体に磁場変化を与えた場合に、磁性体内部でエントロピー変化が生じる「磁気冷凍効果」を利用して冷凍作用を生じさせる冷凍方式である[2]。気体冷凍では、断熱圧縮され排熱した作業流体は、断熱膨張過程で冷凍を生成する。低温となった作業流体はエントロピーを増加させながら吸熱をし、冷凍能力を発現する。一方、磁気冷凍で断熱圧縮に対応するのは断熱膨張であり、断熱膨張に対応するのは断熱消磁である。この過程で磁気系の温度が降下する。磁気冷凍システムでは、この磁気冷凍効果により磁性体自身に生じる温度低下を効率よく外部へ取り出すことで冷凍を行える。

室温域においては、磁性体の熱容量が大きくなるため、磁気冷凍効果によって生じる磁気系の温度変化に対し、外部に取り出し冷凍に利用することができる温度変化が小さくなる。従って、実際の冷凍に必要な低温を得るには、より強い磁場を加えることで、磁気冷凍効果による磁性体の温度変化を大きくすることが必要である。
Fig. 1 Schematic of the Active Magnetic Regenerator.

Fig. 2 Schematic of Halbach-array.

Fig. 3 Ring Halbach-array Magnetic Circuit.
Table 1 Ring Halbach-array Magnetic Circuit.

<table>
<thead>
<tr>
<th>Material</th>
<th>Nd-Fe-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH max</td>
<td>382 kJ/m³</td>
</tr>
<tr>
<td>Array</td>
<td>Ring Halbach</td>
</tr>
<tr>
<td>Inner diameter</td>
<td>100 mm</td>
</tr>
<tr>
<td>Outer diameter</td>
<td>200 mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>50 mm</td>
</tr>
<tr>
<td>Pole angle</td>
<td>60°</td>
</tr>
<tr>
<td>Thickness of duct</td>
<td>10 mm</td>
</tr>
<tr>
<td>Pole number</td>
<td>2</td>
</tr>
<tr>
<td>Pole gap</td>
<td>22 mm</td>
</tr>
<tr>
<td>Flux density at duct</td>
<td>Max 1.1 T</td>
</tr>
</tbody>
</table>

Fig. 4 Magnetic flux profile at the AMR.

Fig. 5 Photograph of the magnetocaloric refrigerator which has halbach array magnets and a disk geometry material.

Fig. 6 Magnetocaloric material duct.

Fig. 7 Schematic of the magnetic regeneration system with magnetocaloric material duct.

価したところ, Fig. 4（右）に示すように, 磁気作用物質の透磁率により, 軸方向へ磁化した磁石に挟まれた部分における磁束の集中が強く、最大磁束密度は1.1 Tesla（赤色部分）となることが分かった。

3 円環状ハルバッハ配列磁石を用いた室温磁気冷凍機

以上の検討を元に、円環状ハルバッハ配列磁気回路を用いた室温磁気冷凍機を製作した（Fig. 5 参照）。円環状ハルパッハ配列の内には、最大エネルギー積382 kJ/m³のネオジム磁石を用いた。磁気作用物質はGdおよびLa(Fe0.84Co0.06Si0.10)13以下のLaFeCoSi（表記）を用いた。磁気作用物質を充填したAMRは、24個に分割した後、隣接する2個を内径側において接続したものを1組として、Fig. 6のように12組に集約した。

Fig. 7に磁気冷凍システムのフローを示す。充填槽を挟み込むように配置された円環状ハルバッハ配列磁気回路が回転することにより磁気作用物質が励起磁される。熱交換器を構成する流体は初期温度T₁ = T₀でポンプに摂流され、流体の温度が低下する。温度を低下させた流体は、所定のヒーター熱負荷
を与えられた後，励磁 AMR へ移送され，そこで磁気作業物質の熱を勧めたあとチラーにより初期温度 $T = T_m$ に調整され，再びポップにて消磁 AMR へ移送される循環系を構成している。円環状ハルバッパ配置の対の回転移動と同期したロータリー弁の切り替えに伴い，前者は消磁した AMR か供給経路を，後者は励磁した AMR か帰還経路を各々構成し冷却部における熱輸送媒体の流動の向きを一定としている。

4 磁気作業性質の磁気熱量効果

室温磁気冷凍では，磁気作業性質として室温付近まで強磁性を示すガドリニウムが用いられることが多い。Fig. 8 に Gd の磁気エントロピー変化 ΔS_m の温度依存性を示す。磁気エントロピー変化はキュリー点である 293 K 付近で最大となることが分かる。一方，永久磁石で発生可能な磁場程度で，Gd の磁気熱量効果を回る材料開発が急速に進められている。本研究で用いた LaFeCoSi は 281 K にキュリー点を持つ 2 次相転移材料である。

Fig. 9 に本研究に用いた LaFeCoSi の磁化の温度依存性を示す。磁化測定のデータから磁気エントロピー変化を次式により算出できる。

$$\Delta S_m = \int_{0}^{T_c} \left(\frac{2M}{cT} \right) dH$$ (1)

Fig. 10 に LaFeCoSi について，(1)式を用いて算出した磁気エントロピー変化 ΔS_m の温度依存性を示す。0-2 T の磁場変化により，T_c においては M/kg で超大な磁気エントロピー変化が観測される。Gd では 0-2 T の ΔS_m は -5 J/kg [1] であるので，本化合物は Gd に比べ約 1.6 倍の磁気エントロピー変化を有することがわかる。

5 室温磁気冷凍システムの冷凍能力試験

製作した室温磁気冷凍機の冷凍能力試験を行った。冷凍能力は，Fig. 7 において，高温度の温度を Gd の場合にはキュリー点近傍である 20℃ とし，LaFeCoSi ではキュリー点である 8℃ に設定し，低温端との温度スパンの設定が実現した時の，冷却部のヒーター電力をとした。

Gd について，温度スパン 0 K の条件における冷凍能力を Fig. 11 に示す。回転数が 10 rpm，40 rpm のときに，磁気作業物質が充填された AMR で熱交換する熱交換媒体の流量を増加するのに伴い冷凍能力が大きくなる傾向であるが，Gd の 5 rpm では流量に対して冷凍能力にピークが認められる。磁気作業物質充填層を流動する熱交換媒体の流量が大きいほど磁気熱量効果に よって作業物質に生じた吸発熱量を多く輸送できるため，ある流量までは冷凍能力が増加するが，充填した 磁気作業物質の吸発熱を取り戻してお流量を増やせば，熱交換媒体の温度変化が小さくなるため，冷凍能力は低下するものと考えられ，定性的にはこの傾向は いずれの回転数でも同様であると推測される。
Fig. 11 Cooling power of the magnetocaloric refrigerator system with Gd as a function of volumetric flow rate.

Fig. 12 Cooling power of the magnetocaloric refrigerator system with LaFeCoSi as a function of volumetric flow rate.

つまり、LaFeCoSi の冷凍能力を Fig. 12 に示す。LaFeCoSi については、磁石の回転数が 5, 10, 40 rpm のいずれの場合でも 5 L/min の流量の範囲においては冷凍能力が増加傾向を示している。Gd の結果と比較すると、5 rpm, 10 rpm のときの冷凍能力は大きいが、40 rpm では逆に Gd に比べて小さい。また、回転数を増加した際の冷凍能力の増加も Gd に比べて小さいことが分かれる。

Gd と LaFeCoSi の冷凍能力の結果は、両者の比熱を考えることで整理できる。定性的にはいずれの場合にも流量にピークが出現すると考えられるが、LaFeCoSi の比熱は、Gd に比べ大きいため、5 L/min の流量範囲では磁気作業物質の吸熱熱を熱交換媒体が取りきっていないと考えられる。また、本試験装置では、磁石の回転数に合わせてロータリーバルブが同期しており、回転数を増加させれば熱交換時間が短縮される。LaFeCoSi に対しては流量が不足している領域で熱交換時間が短くなると、低磁交換が不足する。そのため、回転数を増加してもその効果が相殺されてしまうと考えられる。本試験装置は耐圧の関係から 5 L/min 程度までしか流量をとることができず、より流量の大きな領域での冷凍能力の傾向を知ることができない。そこで、温度スパン 0 K における冷凍能力の流量依存性について数値計算を行い、Gd と LaFeCoSi を比較した。

7 解析による冷凍能力の特性把握

AMR の磁気作業物質、熱交換媒体のエネルギーバランスは、以下の式で与えられる。

磁気作業物質 (添え字 s) :

\[
\rho_s \frac{\partial T_s}{\partial t} = \lambda_s \frac{\partial^2 T_s}{\partial x^2} + \frac{A}{V_s} h(T_s - T_t) + \frac{Q_{mag}}{\Delta V_s} \tag{2}
\]

熱交換媒体 (添え字 f) :

\[
\rho_f \frac{\partial T_f}{\partial t} = \frac{u}{V_f} A (T_s - T_t) \tag{3}
\]

\(\rho \): 密度, \(c \): 比熱, \(T \): 温度, \(\lambda \): 熱伝導率, \(\Delta t \): 熱交換時間, \(h \): 熱伝達係数, \(x \): 流路長, \(A \): 伝熱面積, \(V \): 流路体積, \(Q_{mag} \): 磁気熱量効果, \(u \): 空塔速度

(2), (3) を数値的に連立して解くことにより、流量、磁
第回転数に対する冷凍能力を求めた。

Fig. 13 に Gd を用いたときの計算結果を示す。実験では5 rpm のピークのみ確認できだが、10, 40 rpm についても、流量に対して冷凍能力がピーク値を持つ傾向がわかる。

Fig. 14 には LaFeCoSi を用いたときの計算結果を示す。LaFeCoSi は Gd に比べ比熱が大きいために、5, 10 rpm の冷凍能力ピークを示す流量はいずれも Gd よりも大きい。LaFeCoSi の磁気エントロピー変化は Gd よりも大きく、冷凍能力のポテンシャルは高い。材料のポテンシャルを引き出すには流量など適切な条件で運転することが重要であることが示唆される。

8 結言

最大磁束密度 1.1 T を有する円環状ハルパッハ配列磁気回路を設計し、これを用いた室温磁気冷凍システムを構築した。この磁気冷凍システムに、異なる動作温度を有する磁気作業物質の候補として、Gd と LaFeCoSi を搭載して性能評価を行った。

温度スパン 0 K の条件における冷凍能力は熱交換媒体流量を増加するのに伴い大きくなるが、Gd の 5 rpm では流量に対して冷凍能力にピークが認められ、Gd の 5 L/min 以外の条件ではいずれも冷凍能力のピークは認められず、5 L/min 以降も冷凍能力が増加する傾向が示唆された。

より流量の大きな領域での冷凍能力の傾向を知るため、数値解析を行った。LaFeCoSi の磁気エントロピー変化は Gd よりも大きく、流量など適切な条件で運転することで冷凍能力のポテンシャルが引き出されることが示唆される。

謝辞

本件の遂行に当たり、蔵王精機株式会社技術顧問の伊藤孝治氏にご協力いただいた。ここに記して謝意を表す。なお、本研究の一部は独立行政法人新エネルギー・産業技術総合開発機構(NEDO)の委託により実施した。

参考文献