小型励磁用内挿コアを用いた実機ステータコアの磁気特性評価

Evaluation of the Magnetic Properties of the Actual Stator Core Using the Small Excitation Inner Core

岡 茂八郎*1（正員）、小笠原 崇人*1、樫園 正人*2（正員）

Mohachiro OKA (Mem.), Takato OGASAWARA, Masato ENOKIZONO (Mem.)

Achieving a high efficiency in rotating machines is especially important in terms of saving energy. It is well known that the efficiency of a rotating machine such as the induction motor is not 100%. The manufacturing process of a rotating machine increases iron loss. This problem is called the building factor problem. The cause of this problem is a residual tensile stress and a residual compressive stress in the stator core caused by the manufacturing process. It is well known that the circumferential iron loss distribution of the stator core was changed by a residual tensile and compressive stress in the stator core. In addition, they also influence the axial iron loss distribution. Therefore, it is necessary to know their influences on the axial iron loss distribution. In this paper, iron loss and other magnetic properties of an actual stator core of the complex configuration was evaluated by using a small excitation inner core under the external compressive force. The results indicate that magnetic properties such as iron loss (Wi) of the laminated actual stator core clearly depend on the axial position, the circumferential position and the external stress.

Keywords: Iron loss, actual stator core, building factor, manufacturing process, small excitation inner core.
Fig. 1 An actual stator core, small excitation inner cores, excitation coils and a search coil.

B_{e}も式(1)と式(2)を使った B-H 曲線より求めた。ここで、$
ho [kg/m^3]$ はステータコア材料の密度、$T[s]$ は励磁電流の周期を表す。また、N_e はサーチコイルの巻数、$S [m^2]$ はサーチコイルの断面積、$v_{ex}[V]$ はサーチコイルの誘起電圧、N_i は励磁コイルの巻数、$i_{ex}[A]$ は励磁電流の瞬時値、$L_e [m]$ は有効磁路長を表す。なお、有効磁路長 L_e は、以下の手順で求めた。まず、二次元有限要素法を用いた磁界解析によって励磁用内挿コア内およびステータコア内の磁束密度分布を求めた。この結果から小型励磁用内挿コア内とステータコアのディース部においては、磁束の分布はその幅方向でほぼ均一であった。そこで、この部分の磁路長はその中心の長さ(L_1)とした。また、コアバック部では、ステータコア内周部の磁束密度が高く外周部は低くなっているため、この部分の磁路長は、コアバック部の幅の内周より1/4 の長さ(L_2)とした[4, 5]。この両者の長さの和を $L_e(=L_1+L_2)$ とした。Fig. 1 に励磁コイルを巻いた小型励磁用内挿コアの配置を示す。

$$ H = \frac{N_i j_{ex}}{L_c} $$ (1)

$$ B = -\frac{1}{N_s S} \int v_{ex} dt $$ (2)

$$ W_i = \frac{1}{\rho T} \int H \frac{dB}{dt} dt $$ (3)

3 測定システム・小型励磁用内挿コア・測定条件

3.1 測定システム

Fig. 2 に今回の実験に用いた磁気特性測定システムのブロック図を示す。測定システムは、AD コンバーター、DA コンバータ、パワーアンプ、差動増幅器、シャント抵抗、励磁コイル、サーチコイル、制御用のコンピュータで構成されている。このシステムでは、励磁電流の波形を制御して、小型励磁用内挿コアの磁束密度の波形が正弦波になるようにフィードバック制御を行った。電圧を算出するための磁界の強さ H はシャント抵抗の両端の電圧と推定した有効磁路長から励磁電流法によって算出した。同様に磁路の励磁束密度は、片方の小型励磁用内挿コアのみに巻いたサーチコイルに励起される電圧から計算し、励磁束密度の最大値を B_{ex} とした。

3.2 外力印加装置

Fig. 3 に外部応力印加装置の概略図を示す。この装置は、スクリュージャッキ（JOG, 10 kN, 日本ギア工業株式会社）とロードセルおよび計装アンプ（LCN-A-10KN, WGA-670B, 10 kN, 共和電気株式会社）などからなる。また、ステータコア周辺の外力印加装置の部材は、磁性を持たないステンレス鋼を使用した。本実験では、外力はx方向とし、0 kN, 5 kN, 10 kN を加えた。

3.3 小型励磁用内挿コア

今回の実験に使用した小型励磁用内挿コアの形状を Fig. 4 に示す。コアに電磁鋼板を積層した足の開口角度が 60 度のものを使用し、励磁コイルは、直径
Fig. 4 Shapes of an excitation inner core.

Fig. 5 Photograph of an excitation inner core with an excitation coil and a search coil.

0.8 mmのホルマル線を80回、サーチコイルは、直径0.2 mmのホルマル線を3回巻いた。小型励磁用内挿コアの積み厚は、10 mmとした。Fig. 5に小型励磁用内挿コアをアクリルで作成した固定用の治具に組み付けた写真を示す。この方法では、励磁用内挿コアをステータコアのティースに圧接した時の力のばらつきや微小なギャップの発生が磁気特性の測定誤差の原因となることが考えられる。そこで、励磁用内挿コアの固定具に歪センサを設け励磁用内挿コアのティースへの押しつけ力を一定に保ちながら測定を行った。なお、励磁用内挿コアとティース間のギャップ等の磁気特性の評価値への影響は考慮していない。

3.4 測定条件と試料

本実験に用いたステータコアは、無方向性珪素鋼板を積層し、8か所のかしめで成形したものである。また、積層直後の全閉外扇形の三相誘導機（1.5 kW、200 V、50 Hz及び60 Hz共用、4極）のステータコアであり、各部の寸法は、外径157 mm、内径95 mm、積厚65 mmである。磁気特性の測定は、ステータコアの外周部にかしめや切り欠きがあり、測定角度位置によって周方向に磁気特性が異なっていることが予想されるためステータコアの全周にわたって10度ごとに行った。なお、測定時の小型励磁用内挿コアの角度位置は、Fig. 6の位置に励磁磁束密度測定用のサーチコイルが巻いてある励磁用内挿コアがあるとき0度とした。励磁用内挿コアの角度位置と外力の印加方向（x方向）をFig. 6に示す。なお、ステータコアを形成している電磁鋼板の圧延方向はy軸方向である。また、軸方向の測定位置は、ステータコアの軸方向の対称性からFig. 7に示すようにステータコアの軸方向の上端部（A）、上半分の中間部（B）、中央部（C）の3か所であり、この3つの位置において周方向に磁気特性を測定した。磁気特性の測定は、励磁電流の周波数を50 Hz、励磁磁束密度を0.5 Tから1.5 Tまでを0.5 T刻みで測定した。測定値は同じ箇所を3回測定しその平均値とした。なお、ステータ巻線の結線は全て切断している。

4 三次元有限要素法による磁束密度と応力の解析

4.1 磁束密度解析

小型励磁用内挿コアがステータコアの中央部にある場合と、端部にある場合では励磁時の磁束密度分布の違いが予想されることから、市販の三次元有限要素法ソフトウェア（JMAG）を使用してステータコア内と励磁用内挿コア内の磁束密度の分布を確認した。ここで、励磁コイルの巻き数を80回、励磁周波数を50 Hz、励磁電流を0.2 Aとした。解析は、実験に使用したステータコアと同じ材質の電磁鋼の塊状鉄心を用いて行った。なお、鉄心の飽和を考慮し、渦電流を考慮しないことによって近似的に電磁鋼板の積層を表現した。また、磁束密度は対象物全体に渡って計算しその断面
を表示した。

Fig. 8 に小型励磁用内挿コアが中央部および端部にあるときの軸方向位置での磁束密度分布を示す。Fig. 8(a) では、コアバック部の励磁磁束密度は軸方向に対称に分布しているが、Fig. 8(b) では、コアバック部、小型励磁用内挿コアとも非対称になるとともにコアバック部の磁路が Fig. 8(a) に比べて狭くなっている。その結果、ステータコアの端部では、磁路全体の磁気抵抗が大きくなり、同じ大きさの磁束密度を発生するために大きな励磁電流が必要となることからステータコア端部(A)では中央部付近より銑損が大きく評価されることが予想される。

4.2 応力解析
外力を印加した場合のステータコア内の応力分布を知るために市販の三次元有限要素ソフト(ANSYS)を用いて応力解析を行った。Fig. 9(a) に Fx (Fig. 9 では X 方向、Fig. 6 参照)を印加した時のステータコア中央断面のミーゼス応力の分布を示す。また、Fig. 9(b) に Fig. 9(a) と同じ条件下でのステータコア上面のミーゼス応力の分布を示す。ステータコア部は電磁鋼板を積層した形態でメッシュが多くなりすぎため、S45C相当の鋼で代用した。また、対称性を考慮してステータコアの 1/8 の領域を解析し、表示は断面の 1/2 とした。また、外力は、ステータコアの 0 度および 180 度の位置にある切り欠き面（Fig. 6 参照）に均一に印加した。Fig. 9 の 0 度および 180 度の位置では外力による応力はステータコアの外周部で圧縮応力であり、内周部では引張応力、また、90 度および 270 度の位置ではステータコアの外周部では引張応力であり内周部では圧縮応力である。両図を比較すると、Fig. 9(b) のステータコア内周部の 0 度および 180 度の位置の引張応力、および、90 度および 270 度の位置の圧縮応力も Fig. 9(a) により大きくなっている。この応力の大きさや方向の違いによって銑損が異なることが予想される。

5 小型励磁用内挿コアによる磁気特性評価

5.1 磁気特性の軸方向分布
Fig. 10 から Fig. 12 に外力が印加されていない場合で、Bex が 1.5T の場合の、A 部、B 部、C 部の磁気特性（鉄損 Wm、保磁力 Hz、残留磁束密度 Bres）を示す。Fig. 10 に示す Wm の周方向および厚さ方向の値は、90 度および 270 度の位置で大きくなっている。これは、ステータコアを形成している電磁鋼板の圧延方向の影響であると考えられる。

また、厚さ方向では B 部、C 部ではほぼ同じであるが、A 部でその値が大きくなっている。さらに、鉄損の場合と同様に Hz、Bres とも A 部で B、C 部と異なりおり、鉄損と同様な傾向を示している。これは、各位置での磁路内磁束密度分布の違いが原因であると考えられる。

5.2 外力(Fx)下における鉄損の周および厚さ方向分布
Fig. 13 に C 部、Fig. 14 に B 部、Fig. 15 に A 部の鉄損の Fx が 0, 5kN, 10kN、Bex が 1.5T の場合の周方向分布を示す。すべての図において 90 度および 270 度の位置の鉄損が大きくなっているが、これは前述の電磁鋼板の圧延方向に垂直な方向に磁束が通ることの影響のみでなく、応力の印加の前後で磁路の長さや磁束密度分布などの条件が異なるわけではないので、外力によりステータコアのコアバック部のこの方向の内側の応力は圧縮応力となっているためであると考えられる。
Fig. 10 W_i at each axial and each angular position.

Fig. 11 H_c at each axial position and each angular position.

Fig. 12 B_r at each axial position and each angular position.

0度および180度の位置ではステータコアのコアパック部のこの方向の内側は引張応力となっているため、外力非印加時とあまり変わらない結果となっている。また、各部において、印加されている外力が大きくなるに従って鉄損が増加しており、その増加の度合いは90度および270度の位置で大きくなっている。また、これらの図を比べると、外力の影響はA部で大きくになっている。これは、Fig. 9に示すようにA部の圧縮応力力がB、C部よりも大きくなっていることが原因であると考えられる。

このようなステータコアの外力下での鉄損は、周方向や軸方向において圧縮応力や引張応力の違いによって異なっており、ステータコアへの外力がステータコアの鉄損等に影響を及ぼすことが分かった。
Table 1 Ratio of averaged iron loss at 350, 0, 10, 170, 180, and 190 degrees and average iron loss at 80, 90, 100, 260, 270, and 280 degrees.

<table>
<thead>
<tr>
<th>B_{ex}=1.5T</th>
<th>F_{x} [kN]</th>
<th>Averaged W_{i} [W/kg] at 0 and 180 deg.</th>
<th>at 90 and 270 deg.</th>
<th>R [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>0</td>
<td>3.88</td>
<td>3.95</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.90</td>
<td>3.96</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.91</td>
<td>4.00</td>
<td>2.2</td>
</tr>
<tr>
<td>Quarter</td>
<td>0</td>
<td>3.88</td>
<td>3.96</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.89</td>
<td>3.96</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.91</td>
<td>4.02</td>
<td>2.9</td>
</tr>
<tr>
<td>Edge</td>
<td>0</td>
<td>4.24</td>
<td>4.31</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.28</td>
<td>4.37</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.25</td>
<td>4.42</td>
<td>4.1</td>
</tr>
</tbody>
</table>

5.3 外力下における鉄損の軸方向の増加

Table 1 に外力が加わると引張応力が作用する位置 (350, 0, 10, 170, 180, 190 度) の鉄損の平均値と圧縮応力が作用する位置 (80, 90, 100, 260, 270, 280 度) での鉄損の各応力における変化率 R (%) を示す。軸方向の各部とも外力の大きさに従って若干増加しているが、その変化は A 部で最も大きかった。なお、応力が 0 kN の場合でもこの R が 0 ではないのは前述のように圧延方向の影響を考慮される。また、5 kN を印加した場合も多少の増加が見られ、これが原因である。応力の影響が外力によって緩和されることが考えられる。この点については今後詳細に検討する必要がある。

6 まとめ

本報告では、積層厚がステータコアの約 6 分の 1 の小型励磁用内挿コアを用いて積層直後のステータコアの周方向だけでなく軸方向の磁気特性を、外力印加時と軸の外力を加えた場合について調査した。

その結果、鉄損を始めとする磁気特性は、測定した軸方向の 3 点すべてにおいて外力により周方向に変化していた。鉄損ではステータコア内周部に圧縮応力が加わる部分において増加し、引張応力が加わる部分ではほとんど変化していなかった。また、外力による磁軸方向の鉄損の変化の割合は、A 部が C 部よりも大きくなっていった。

しかし、提案手法を用いた実機形状ステータコアの磁気特性評価法は製造段階での磁気特性の相対的な変化の検出には有効であるが、絶対的な値を評価することができない欠点を持っている。また、小型励磁用内挿コア法では軸方向の測定位置によって磁路の磁束密度分布が異なり測定位置間での評価値の直接的な比較ができない欠点がある。今後は、励磁法の工夫などによより有効な実機ステータコアの磁気特性評価法を開発したいと考えている。

謝辞

本研究の一部は、JST、大分県地域エネルギーセンターにおける「次世代電磁力を活用する発電技術の開発」の研究に伴う基礎研究を行なった。本研究は、大分県産業創造機構の下地課長研究員、三次元応力解析では京都大学産業創造機構の学部長研究員の協力をいただいたことに感謝します。

(2012 年 10 月 6 日受付、2013 年 4 月 3 日再受付)

参考文献

[6] 岡茂八郎、小笠原崇人、河野健、鳥田一憲、橿原正人、実機形状ステータコアの磁気特性に及ぼす圧縮力の影響、電気学会マグネティックス研究資料、MAG-12-050, pp. 9-14, 2012.