電磁センサ開発とその非破壊評価の適用例

Development of Electromagnetic Sensor and Its Application for NDE

菊池 弘昭*1(正員), 中居 伸悟*1, 清水 勇*1, 岩田 圭司*2

Hiroaki KIKUCHI (Mem.), Shingo NAKAI, Isamu SHIMIZU, Keiji IWATA

Magnetic hysteresis characteristics have good correlation with material degradations, and magnetic flux leakage technique detects small defects in ferromagnetic steels. Both methods use a single magnetic yoke, therefore we have a potential to evaluate simultaneously material degradation and small defects using a single magnetic measurement system. In this study, we composed an electromagnetic sensor, which can measure hysteresis curves and detect leakage magnetic flux near surface of the specimen, and tried simultaneous evaluations of degradation and sub-mm sized defects. The hysteresis curves are sensitive to material degradation, while are sensitive to small defects. Though magnetic flux leakage can detect small defects, it does not show a significant change against degradation. We successfully evaluated material degradation and small defects separately with the single measurement system.

Keywords: nondestructive evaluation, coercivity, magnetic flux leakage, material degradation, small defects.

1 緒言

橋梁、高速道路などの社会基盤構造物は、1960年代の高層建築物の完成に伴い、これらの構造物の建替・新規建設は容易ではないことから、建設後50年を経過した今もなお維持使用されていることが多い。よって、老朽化(高経年化)が進展しており、2012年の法子トンネル崩落事故のような重大事故のリスクが懸念されている。そのため、構造物の余寿命や健全性を把握した上で長期使用することが望まれており、健全性評価技術の高度化に対する期待は一層高まっている。一方、構造物には鋼材が多用されており、その生産現場においては、調査や品質向上に加えて品質保証が必要である。これら構造物の健全性評価や鋼材の品質保証のために非破壊評価技術が盛んに進められている。評価手法としては、超音波、浸透、磁粉、浸透、放射線探傷など様々存在するが、主に微小化、亀裂の発生検知を目的としているものが多い[1,2]。これに対し、亀裂発生前の材質劣化の評価に有効な技術のひとつとして磁気の手法が挙げられる[3-6]。構造物の鋼材には微小磁性を示すものが多用されていることによる。強磁性鋼材材料の磁気特性は塑性変形により生じる転位構造の変化[7, 8]や粒径[9, 10]、析出物[11, 12]等の微細組織に強く影響を受け、また材
Fig. 1 Magnetic flux distribution of specimen without/with defect.

Fig. 2 Shape and dimension of tested specimen.

Fig. 3 Dimension of single magnetic yoke.

Fig. 4 Measurement circuit.

HHP-SF を用いた。センサの感度面積は 20 μm × 20 μm、感度が 28.2 mV/T であり、ホールセンサ駆動には 5 mA の電流を用いた。以上がここで用いる電磁センサの構成となる。Fig. 4 は磁気計測の測定回路図を示したものである。測定試料の上に U 字型ヨークを配置し、励磁コイルに正弦波電流を印加することで試料を励磁しており、最大印加電流は 8 kA/m である。励磁周波数は 1 Hz とした。ヒステリシスループの計測では、\(H = N/I \)（\(N \) : 励磁コイル巻数, \(I \) : 励磁電流, \(L \) : 磁路長）の関係を用いて磁界強度を算出し、ヨーク足に巻かれたビックアップコイルの電圧を積分して磁束を算出している。励磁密度 \(B \) は磁束を試料の断面積で除した値としている。ビックアップコイルの電圧, ホールセンサの電圧は増幅器, ローパスフィルタを通じた後 AD 変換して PC に取り込んだ。ビックアップコイルの電圧では 10 倍, ホールセンサ電圧は 1000 倍に増幅し, フィルタの遮断周波数は 40 Hz とした。ホールセンサ電圧は最大値及び最小値を検出し, 兩者の差分を取った値を評価に用いた。計測では, 電磁センサを 12 mm の範囲
で走査し、磁化曲線から算出した保磁力やホールセンサ電圧の位置分布を計測した。測定開始位置は孔の中心より約6mm離れた位置とし、ここを$x = 0$mmとしている。また、孔は試料と磁気ヨークが接触する面に位置するようにした。

3 実験結果

3.1 磁気ヒステリシス曲線

Fig. 5 は未圧延材、圧延材の磁化曲線を示した。Fig. 5 (a), (b) は、未圧延材のそれぞれ孔あり、孔なしの試料の磁化曲線で、測定位置は$x = 0, 5.5, 6$mmとした。孔ありの$x = 5.5, 6$mmの位置はおおよそ孔の端部位置に相当する。いずれにおいても磁化曲線に大きな差は得られていない。Fig. 5 (c), (d) は、圧延材における孔あり、孔なしの試料の磁化曲線で、測定位置はそれぞれの試料において$x = 0, 5.5, 6$mmとした。未圧延材の場合も同様、磁化曲線に差異はみられない。一方、圧延材と圧延材の磁化曲線を比較すると、圧延材の方が保磁力は増加し、ループの傾きも増加しており、顕著な差がみられることから劣化診断が可能であることを示している。なお、未圧延材及び圧延材のビッカース硬度を測定したところ、それぞれ140, 206程度の値であった。

3.2 ホールセンサ電圧の位置依存性

Fig. 6 は未圧延材及び圧延材のホール素子電圧の時間依存性を示した図である。比較のために励磁コイルに印加した電流波形も示している。また、測定位置は$x = 0, 5.5, 6$mmとした。孔を有する試料においては5.5, 6mmの位置は孔の端部近傍である。未圧延・圧延材ともに孔のない試料においては、位置に依存せず電圧波形は同様の時間依存性を示す。一方、孔を有する試料においては、位置により電圧波形に変化がみられる。位置0mmの波形と比較して、5.5mmでは振幅が増加し、6mmの位置では低下する。

本来、孔がない箇所でのホールセンサ出力は時間に依存せず、一定値になると期待されるが、本研究では、孔のない位置においても励磁電流に依存した出力が検出されていることが確認される（$x = 0$mm）。すなわち、励磁電流に依存した磁界がホールセンサに印加されてオフセットを生じている。オフセットがない場合、ホールセンサ電圧の最大値は孔付近で双対のピークが生じると期待されるが、ここではオフセットに起因して最大・最小値が観測され、直流の磁束漏波で観測されるプロファイルに似た特性を示している。本研究では、より大きな変化を得るために、ホールセンサ電圧の最大値と最小値を検知し、その差分をとって評価した。

Fig. 7 は、未圧延材、圧延材におけるホールセンサ電圧の最大値、最小値を測定位置に対して示したグラフを示した。それぞれにおいて孔の有無の場合について
示している。未圧延、圧延いずれの試料においても孔の有無の場合は、孔付近でホールセンサ電圧に大きな変化が確認される。具体的には、最大値・最小値は 5.5 mm でそれぞれ最大・最小を示しており、6 mm では、最小・最大を示している。一方、孔のない試料では最大値・最小値ともほぼ一定の値を示している。

3.3 保磁力・ホールセンサ電圧差分の位置依存性

Fig. 8 に、保磁力及びホールセンサ電圧の最大値と最小値の差分を測定位置に対してプロットした図を示した。いずれの場合でも未圧延材・圧延材の試料に対して孔の有無を比較して示した。保磁力においては、孔の有無には関係なく、保磁力の位置分布は一定であるが、未圧延材、圧延材との比較においてはその値に明確な差を確認できる。未圧延材では 0.6-0.7 kA/m、圧延材では 1.1 kA/m である。よって、材質の劣化には敏感であるが、位置分布には変化がないため微小欠陥の判別には向かない。一方、ホールセンサ電圧差分は、孔の有無で明確な違いを生じているため、孔の判別には有効である。孔を有する場合、5.5 - 6 mm 付近でホールセンサ電圧差分が最大・最小を示すのに対して、孔な
しの場合，差分は位置によらず一定の値となる。また，材料の違いによる明瞭な差は得られておらず，材料劣化の評価には不向きである。

3.4 勧磁周波数依存性

磁束漏洩法単独の場合，勧磁手法としては直流の適用も有りうるが，磁化曲線計測と一体化する場合，交流計測となる。そこで，ここでは，勧磁周波数の違いによる測定結果への影響について実験的に検討した。勧磁周波数は，0.1，1 及び 10 Hz とした。測定系は Fig. 4 に示したものを用いた。0.1, 1 Hz においてはフィルタの遮断周波数を 40 Hz とし，10 Hz では 400 Hz として計測を行った。Fig. 9 には未圧延，圧延試料で孔ありの試料における保磁力の位置分布を測定した結果を示した。これまでに述べたとおり，孔の有無には反応しないので，一定の値を取る。一方，各勧磁周波数において未圧延と圧延材との違いは明確に読み取ることができる。また，周波数が増加すると電解液温度の影響で，保磁力は増加しているのが明らかである。Fig. 10 は未圧延，圧延試料のうち孔ありの試料においてホールセンサ電圧の差分を計測位置に対して示した図である。勧磁周波数，未圧延・圧延に依存することなく，孔近傍でホールセンサ電圧の変化が得られていることから，いずれの勧磁周波数においても孔の判別が可能であることが明らかになった。ただし，勧磁周波数を高周波化し，ローバス・フィルタの遮断周波数を増加させた場合，ホールセンサ電圧では高周波ノイズ成分が立ち，SN 比が劣化する傾向が観測された。また，0.1 Hz を利用した場合，計測時間が大幅に増加した。実用化に際しては，評価に適した測定条件の選定が必要になる。
4 結言

強磁性を有する鋼材の材質劣化と微小欠陥検出を同時かつ分離して計測するために、磁化曲線と漏れ磁束を同時に検出可能な電磁センサを構築した。その電磁センサを用いて、材質劣化、微小欠陥を模擬した鋼材に対して有用性の確認を行った。磁化曲線は材質劣化のいは微小欠陥のみを検出できた。このことから、材質劣化、微小欠陥の同時評価が可能となった。

参考文献

[1] 土門 齊, 越出 憲一, やさしい非破壊検査技術, 工業調査会, 1996。