三相変圧器モデル鉄心の局所二次元磁気ひずみ測定

Measurement of Local Two-dimensional Magnetostriiction of Three-phase Transformer Model Core

若林 大輔1(正員)，樫園 正人2(正員)

Daisuke WAKABAYASHI (Mem.), Masato ENOKIZONO (Mem.)

Magnetic analysis method considering vector magnetic characteristic and two-dimensional magnetostriiction of electrical steel sheet is suggested and distribution of the two-dimensional magnetostriiction on transformer model core is clear by the analytical method. In particularly, the large magnetostriiction occurs at T joint part due to occurrence of rotating magnetic flux. And, large principal magnetostriiction of contraction occurs in rolling direction at same part. In order to validate the validity of the analyzed results, it is necessary to measure the local two-dimensional magnetostriiction of the transformer model core. This paper presents measurement of the local vector magnetic characteristic and the local two-dimensional magnetostriiction of three-phase transformer model core and the measured results are discussed.

Keywords: vector magnetic characteristic, two-dimensional magnetostriiction, grain-oriented electrical steel sheet, three-phase transformer, three-axial strain gauge.

1 緒言

変圧器騒音の主要因は鉄心材料の磁気ひずみである。磁気ひずみとは強磁性体を磁化した際に、外形が変化する現象で、交流磁界下では磁石周辺の倍の周期で変形することが知られている。そのため、低騒音な変圧器開発には鉄心材料の磁気ひずみ特性を把握する必要がある。変圧器鉄心には一般的に方向性電磁鋼板が用いられており、単板電磁試験器等を用いて励磁方向の磁束密度と磁気ひずみを測定し、B-2カーブやバタフライループから磁気ひずみは評価されてきた[1, 2]。この段階の評価法では、励磁方法と同方向の磁気ひずみのみで評価されるため、一次元の特性となり、低磁気ひずみとするための最大磁束密度を下げるしか方法はない。しかし、実機鉄心中の磁束は任意方向に発生し、それに伴って生じる磁気ひずみも任意方向に発生する。特に、変圧器鉄心のT接合部においては回転磁束が発生することが知られており、同様な箇所で騒音が大きいことが報告されている[3, 4]。

著者らはこれまでに、交番や回転等の任意の磁束条件でのベクトル磁気特性と任意方向の磁気ひずみ（二次元磁気ひずみ）を測定可能なシステムを構築し、それらの特性について報告してきた[5-7]。Fig. 1 は交番磁束下で磁束密度ベクトルの方向に対する方性電磁鋼板の磁気ひずみ量の変化を示す。方性電磁鋼板は圧延方向(θ deg.)に結晶の磁化容易軸が存在するため、圧延方向の透磁率は高く、低損損であることが知られているが、Fig. 1 に示すように磁気ひずみも非常に小さいことが分かる。一方で、磁化方向が圧延方向からずれた場合には、大きな磁気ひずみが発生することが分かる。また、方向性電磁鋼板の磁気ひずみは磁束密度ベクトルの方向に最大とならないため、従来の評価法（×印）の磁気ひずみ量が磁化方向に対して増加減少の特性を示し、約55 deg.の磁束条件でも最小値を示す。しかし、二次元磁気ひずみ評価法（○印）では、大きな磁気ひずみが発生していることから、従来の評価法を用いて変圧器の低損損ひずみ設計を行う場合には、設計上と製造上でも大きく異なる可能性がある。

著者らは二次元磁気ひずみを用いた磁気ひずみ解析を行うために、二次元磁気ひずみの数値モデル化手法

連結先：若林 大輔，〒870-0307 大分県大分市大学一木 1727，日本文理大学工学部機械電気工学科，
e-mail: wakabayashidis@nbu.ac.jp

1日本文理大学 2ベクトル磁気特性技術研究所

Fig. 1 Peak-to-peak magnetostriiction of GO steel dependence on magnetization direction.
法である E&S-W(Enokizono & Soda - Wakabayashi)モデルを開発した。E&S-W モデルは磁束密度ベクトルと伸びと縮みの最大磁気ひずみの関係をモデル化したものですので、磁束密度ベクトルと磁界強度ベクトルの関係をモデル化した E&S モデルを応用している[8]。この E&S モデルは磁束密度ベクトルの係数とその微分の係数からなり、磁束密度ベクトルの係数項は磁界強度ベクトルと同位相の成分、磁束密度の時間微分の係数項は時間位相でπ/2 位相を遅らしさステリシス現象を表わす。この考え方は既に Chua らによって提案されているが、従来の磁気特性評価に従っているためベクトル磁気特性の本質である磁束密度ベクトルと磁界強度ベクトルの空間的位相差を考慮されていない (θθt = 0 deg.) [9, 10, 11]。すなわち、E&S モデルは空間的位相差を考慮されたベクトル磁気特性を実測結果に基づいて正確に表現できるモデルである。

著者らは、E&S-W モデルを用いた二次元磁気ひずみ解析手法を提案し、提案手法を受電器モデル鉄心に適用し、変圧器の二次元磁気ひずみ分布を明らかにした[12]。解析結果から変圧器では、回転磁場が発生する T 接合部周辺で大きな磁気ひずみが発生した。すなわち、最大磁束密度を下げることなく、低磁気ひずみとなる可能性を示した。

本論文では、変圧器モデル鉄心の二次元磁気ひずみ解析結果の妥当性を検証するために、実際の変圧器モデル鉄心の局所的な二次元磁気ひずみを測定する T 接合部周辺の局所ベクトル磁気特性と局所二次元磁気ひずみの測定結果と前述の解析結果について、議論する。

2 二次元磁気ひずみ解析

本章では、変圧器モデル鉄心の二次元磁気ひずみ解析結果について述べる。二次元磁気ひずみの数値モデル化手法である E&S-W モデルを考慮した二次元磁気ひずみ解析手法により求められる[12]。E&S-W モデルのモデル式を以下に示す。

\[
\begin{align*}
\lambda_{px} &= k_{px} B_x + k_{px} \frac{\partial B_x}{\partial x} \\
\lambda_{py} &= k_{py} B_y + k_{py} \frac{\partial B_y}{\partial y} \\
\lambda_{px} &= k_{px} B_x + k_{px} \frac{\partial B_x}{\partial x} \\
\lambda_{py} &= k_{py} B_y + k_{py} \frac{\partial B_y}{\partial y}
\end{align*}
\]

ここで、\(B_x\) と \(B_y\) はそれぞれ磁束密度ベクトルの x と y 方向成分、\(\lambda_{px}\) と \(\lambda_{py}\) はそれぞれ伸びの主磁気ひずみの x と y 方向成分、\(\lambda_{px}\) と \(\lambda_{py}\) はそれぞれ縮みの主磁気ひずみの x と y 方向成分である。\(k_{px}\) と \(k_{py}\) はそれぞれ磁気ひずみ振幅係数、磁気ひずみ位相係数と呼び、添字 a は p もしくは n、添字 b は x もしくは y である。

式(1)のように E&S-W モデルでは、測定した磁束密度ベクトルの x と y 方向成分と伸びと縮みの主磁気ひずみの x と y 方向成分が対応しており、それぞれの係数を算出することで、測定した二次元磁気ひずみを数値モデル化することが可能となる[8]。
Fig. 2 に変圧器モデル鉄心についてベクトル磁気特性解析と二次元磁気ひずみ解析から得られた最大磁束密度分布(a)と二次元磁気ひずみ分布(b)を示す。解析に適用した方向性電磁鋼板の鋼種は 35P135 である。Fig. 2(a)より、最大磁束密度分布は特に窓の内側で高く、一方で、Fig. 2(b)より二次元磁気ひずみ分布は特に接合部周辺で大きいことが分かる。この T 接合部周辺について、より詳細な分布を Fig. 3 に示す。Fig. 3(a)は磁束密度ベクトル B 軌跡、(b)は応力 ε_A(+)と応力 ε_A(-)の主磁気ひずみ軌跡を示す。T 接合部周辺では、最大磁束密度が高く且つ回転磁束が発生しているのが確認できる。大きな応力と伸びの主磁気ひずみが発生しているのが分かる。方向性電磁鋼板の二次元磁気ひずみは圧延方向 RD に応力の主磁気ひずみが発生するため、T 接合部の上下で圧延方向が異なるために T 接合先端部に応力の主磁気ひずみが集中する結果となった。T 接合部周辺以外の箇所では、圧延方向に交差状の磁束が発生するため、磁気ひずみは非常に小さい結果となっている。

解析結果より、T 接合部で大きな磁気ひずみが発生し、二次元磁気ひずみの挙動が明らかになった。これらの結果の妥当性を検証するために局所ベクトル磁気特性と局所二次元磁気ひずみの測定を行う必要がある。

3 局所二次元磁気ひずみの測定

3.1 測定システム

変圧器モデル鉄心の局所ベクトル磁気特性と局所二次元磁気ひずみを測定するシステムを Fig. 4 に示す [13]。測定手順は、最初に PC にて励磁波形を作成する。その作成した励磁信号を D/A コンバータで出力し、パワーアンプで増幅した後、変圧器モデル鉄心に巻かれた励磁コイルで励磁を行う。変圧器モデルコアに直接巻かれた B コイルで検出した信号を、ブリアンプで増幅した後、A/D コンバータを通じて PC に伝送される。B コイルの信号を PC で積分し磁束密度を計算する。変圧器モデルコア中の磁束密度が目標値になるようにフィードバック制御を行う。磁束密度が目標値に設定された後、x 軸、y 軸、z 軸それぞれのステッピングモータを用いて測定点まで VH センサーを移動させる。VH センサーを変圧器モデル鉄心上に設置し、その測定点での局所ベクトル磁気特性（磁束密度ベクトルと磁界強度ベクトル）を測定する。この動作を測定点数回繰り返す。
3.2 測定センサー

Fig. 5に局所ベクトル磁気特性測定用VHセンサーの構造図と写真を示す。磁界密度ベクトル測定には探針法、磁界強度ベクトル測定にはHコイル法をそれぞれ用いた[13]。局所のベクトル磁気特性を測定するために、探針の幅は7mm、Hコイルの幅は4mmである。

Fig. 6に局所二次元磁気ひずみ測定用3軸ひずみゲージとそれを鉄心表面に接着した写真を示す。使用した3軸ひずみゲージのゲージ長は15mm、抵抗は350.0±2.5Ω、ゲージ率は2.00±2.0％である。鉄心に接着する際、各ゲージ間の角度誤差を極力小さくするために、1枚のプラスチックシートに3軸のひずみゲージが設置されている。また磁界中での測定であるため、抗磁界用ひずみゲージであり、誘導ノイズを低減する構造をもつ[6]。

本測定では、変圧器モデル鉄心のT接合部周辺の2点の局所二次元磁気ひずみを測定するために、Fig. 6のように接着した。接着した鉄心の圧延方向を0degとしたとき、左側の3軸ひずみゲージAの1、2、3の各ゲージ角度は、225deg、165deg、285degである。右側の3軸ひずみゲージBの1、2、3の各ゲージ角度は、315deg、255deg、15degである。

二次元磁気ひずみを以下のように表す。

\[
\lambda_{zz}(\psi) = \lambda_{rr} \cos^2 \psi + 2 \lambda_{rr} \cos \psi \sin \psi + \lambda_{\theta \theta} \sin^2 \psi \tag{2}
\]

ここで、\(\lambda_{rr}、\lambda_{\theta \theta}、\lambda_{\psi} \)は磁気ひずみテンソルを表し、\(\psi \)は任意方向を表す。3軸ひずみゲージの各ゲージから得られる磁気ひずみ量とゲージ角度を式(2)に代入することで、磁気ひずみテンソルが求まる。求めた磁気ひずみテンソルを式(2)に代入し、\(\psi \)を0degから180degまで変化させ計算すると、任意方向の磁気ひずみを求めることができる。これを我々は二次元磁気ひずみといいう[6]。

3.3 変圧器モデル鉄心と測定条件

Fig. 7に本測定で用いた三相三脚変圧器モデルコアを示す。変圧器モデルコアはステップラップ接合で積層されている。電磁鋼板部の実験部は奇数層の設置位置を示し、破線部は偶数層の接合部の位置を示している。2枚の電磁鋼板間にVHセンサーの探針が互いに様々な位置や、片方の探針しか鋼板上に設置できない端の方では測定が不可能であるため、その部分については測定を行っていない。今回使用した方向性電磁鋼板の厚みは0.27mmで3枚積層して鉄心を構成した。その際、積層状態を固定するために各層の磁気鋼板を接着剤で固定した。助磁コイルは巻枠に巻かれ、助磁コイルによる振動を防ぐために巻枠と鉄心が触れていらないことに注意して設置した。

測定条件は磁界周波数50Hz一定とし、Bコイル部の平均最大磁束密度を1.0Tから1.9Tに制御して測定を行った。磁気ひずみの測定は、解析結果より推定された最も磁気ひずみが大きいT接合部周辺に着目して測定を行った。

4 測定結果

4.1 局所ベクトル磁気特性分布

Fig. 8に最大磁束密度が1.0TでのT接合部周辺の局所ベクトル磁気特性の測定結果を示す。Fig. 8(a)は最大磁束密度分布と磁束密度ベクトル軌跡を示す。T接合部周辺に極円状の軌跡が見られるため、回転磁束が発生していることが分かる。それ以外の箇所では、圧延方向に平行な交番磁束が発生している。Fig. 8(b)は最大磁束密度分布と磁界強度ベクトル軌跡を示す。T接合部周辺で大きな磁界強度が発生しており、磁界強度ベクトルは方向性電磁鋼板の磁気異方性の影響により圧延方向に直角方向に発生する。

Fig. 9に最大磁束密度が1.7Tでの局所ベクトル磁気特性の測定結果を示す。Fig. 9(a)より磁束密度分布は1.0Tと比べて分布の濃淡が薄くなり、広い範囲に回転磁束が発生しているのがわかる。またFig. 9(b)より磁界強度分布はT接合先端部に加え、接合面にも大きく発生している。高磁束密度領域では、接合部周辺での磁束の漏れや、積層方向への磁束の渡りによる影響も発生することが考えられ、一方の接合面で高い磁界強度が、もう一方の接合面では低い磁界強度となったと推測される。

局所ベクトル磁気特性の測定より、最大磁束密度の
4.2 局所二次元磁気ひずみ

Fig. 10 に最大磁束密度が 1.0 T での局所二次元磁気ひずみの測定結果を示す。Fig. 10(a) は Fig. 6 に示す左側の A 点、Fig. 10(b) は Fig. 6 に示す右側の B 点の測定結果である。半周期を 4 分割した瞬時値の二次元磁気ひずみを表しており、0 deg. と 180 deg. 方向は試料の圧延方向である。黒色点線と灰色実線はそれぞれ伸びと縮みの二次元磁気ひずみを示し、各ピークを結ぶ方向が最大磁気ひずみとなる。Point A と B ともに、圧延方向直角方向に縮みが、圧延方向に伸びがわずかに発生している。

Fig. 11 に最大磁束密度 1.7 T での局所二次元磁気ひずみの測定結果を示す。Point A と B ともに、最大磁束密度が 1.0 T のときと比べて、磁気ひずみ量が大きくなっている。1.0 T と同様に圧延直角方向に縮みが、圧延方向に伸びの最大磁気ひずみが発生している。Point B では圧延方向に縮みの最大磁気ひずみが発生している瞬時があるが、時間変化と共に最大磁気ひずみの方向が変化している。

Fig. 12 に最大磁束密度の変化に対する最大磁気ひずみ量 (peak-to-peak 値) を示す。各点共に、最大磁束密度の増加に対して磁気ひずみ量は増加している。また、Point A と B の磁気ひずみ量に違いは見られない。一方で、Fig. 11(a) と (b) で示すように、各点で生じる磁気ひずみの伸びと縮みの変化は同じでないことがわかる。
これはFig. 9(b)に示す磁界強度軌跡をT接合部の左右で異なっており、これが起因していると推測する。

本測定結果では、圧延方向に伸び、圧延直角方向に縮みの最大磁気ひずみが発生する傾向を得た。これは、1枚試料の二次元磁気ひずみの測定結果や2章で示した変圧器モデルコアの二次元磁気ひずみ解析結果と異なる結果であった。さらに、測定された磁気ひずみ量も1/10程度小さい値であった。これらの原因として、①積層鉄心、②不均一な磁束密度分布、③接着材の使用による積層鉄心固定、が考えられる。

①については、積層鉄心であるため厚さ方向に流れると磁束成分や、接合面に生じる磁気吸引力の発生が考えられる。②については、接着したひずみゲージ下の磁束分布が不均一であると、それにより磁気ひずみも不均一となる可能性がある。特に、二次元磁気ひずみの測定は3軸ひずみゲージの各ゲージのひずみによって決定されるため、不均一な磁束密度分布による影響を小さくする必要がある。これを解決するには、三軸
ひずみゲージの小型化を行う必要があるが、その際に
は方向性電磁鋼板の結晶粒との関係を考慮する検討が
必要である。③については、今回、局所ベクトル磁気
特性の測定において、VH センサーと鉄心の位置関係
を正確に保持し、積層鉄心のずれを防止するために接
着材によって積層鉄心を固定した。接着材が外部応力
として働き、磁気ひずみを抑制したものとと考えられる。
今後、接着材を使用しない状態で積層鉄心の局所二次
元磁気ひずみを測定し、解析結果と同様な結果が得ら
れるか再検証する必要がある。本測定結果は、接着剤
の使用により、積層鉄心の低磁気ひずみ形成を可能
性を示す。接着剤による効果についても検証する
必要がある。

5 結言

本論文では変圧器の局所二次元磁気ひずみの測定
を行った。変圧器鉄心の磁気ひずみ測定は、参考文献
[4] のように報告されているが、そのほとんどが磁気ひ
ずみ量のみの報告であり、伸びと縮みがどの方向に発
生しているかは明らかにされていない。本論文では、
二次元磁気ひずみを測定することによって、局所的に
伸びと縮みがどの方向に発生するかを明らかにした。
しかし、変圧器鉄心の測定結果と解析結果は大きく異
なるため、その原因と考えられる積層鉄心の効果、不
均一な磁束密度分布の影響、接着剤による積層鉄心の
固定、について今後、検証する必要がある。

参考文献

[1] M. Yabumoto, Review of techniques for measurement of
magnetostriiction in electrical steels and progress towards
1-6, 2009.


[3] 成田賢二, 山口俊尚, 千田功, 3 相 3 腹モデル変圧器鉄
心の T 接合部における回転磁束分布と鉄損分布, 電気學

Galabov, Magnetostriiction distribution in a model transformer

Arbitrary Dynamic Magnetostriiction under Alternating and
Rotating Field, IEEE Trans on Magn., Vol. 31, No. 6

[6] 古林大輔, 戸高孝, 畑田正人, 任意方向交番磁束条件下
での 3 次元磁気歪みとベクトル磁気特性, 電気学会論文誌

[7] 古林大輔, 戸高孝, 畑田正人, 高磁束密度下における電
磁鋼板の 2 次元磁気ひずみ, 電気学会論文誌 A, Vol. 133,

[8] 古林大輔, 畑田正人, E&S モデルを用いた電磁鋼板の 2
次元磁気ひずみモデリング, 日本 AEM 学会誌, Vol. 22, No. 2,


1972.


[12] 古林大輔, 畑田正人, E&S-W モデルを用いた変圧器鉄
心の二次元磁気ひずみ解析, 第 26 回電磁力関連のダイナ

(2014 年 9 月 30 日受理, 2015 年 3 月 18 日再受付,
2015 年 8 月 20 日再々受付)