振動発電に利用できる磁歪合金

Magnetostrictive Alloys Utilized for Vibration Energy Harvesting

鈴木 茂1, 藤枝 俊1, 福田承生2

Shigeru SUZUKI, Shun FUJIEDA, Tsuguo FUKUDA

Magnetostrictive alloys are promising materials for realizing vibration energy harvesting technology, as they enable us to convert kinetic energy to electric energy. These materials are used as smart materials for actuators and sensors. Among these materials, iron based magnetostrictive alloys are attracted since they reveal the superior magnetic properties such as large magnetostriction and high permeability, as well as the good mechanical properties. The present paper describes the present status and prospect of these magnetostrictive alloys. In particular, the physical properties such as elasticity and magnetostriction of iron-gallium binary alloys are overviewed.

Keywords: magnetostrictive alloys, vibrational power generation, magnetic domain

1 緒言

環境発電（エネルギーハーベスティング）は、太陽光や風エネルギーなどの電気、機械的な振動、熱エネルギーなどから、これらのエネルギーを電力に変換する技術であり、この技術により従来の微少なエネルギー転換技術の発電が可能であると考えられている。これらの技術の発展の中で、振動エネルギーを電力に変換する技術は重要であり、有望な環境発電技術の一つである[1]。振動発電技術としては、モーター、エンジン、その他の機械的な振動エネルギー、橋や道路などの構造物からの振動エネルギーなどがある。それらを発電する方法として、(1)電磁誘導による発電、(2)電磁誘導による発電、(3)圧電素子（ピエゾ素子）を用いた発電、(4)磁歪材料を利用した発電などが挙げられている[2]。それぞれの発電方式には長所も短所もある。たとえば、電磁誘導による発電ではサイズが大きくなり、圧電素子は機械的に脆弱であるなどの欠点がある。これらの振動発電では、電流を帯びた電流が得られる。パイオレックスセンサネットワークは磁歪材料を用いた振動発電が有効であると考えられている[2]。

本稿では、振動発電への利用が期待される磁歪合金について取り上げ、それらの基本的性質と発電機構に関連する磁性の挙動などについて述べる。

連絡先：鈴木 茂 〒980-8577 仙台市青葉区片平2-1-1
東北大学多元物質科学研究所
e-mail: ssuzuki@tagen.tohoku.ac.jp
*1 東北大学、*2 株福島結晶技術研究所

2 磁歪（磁気ひずみ）を示す合金

2.1 強磁性体の磁歪

磁歪は磁性材料の磁化の変化により外形の寸法が変化する現象であり、大気や地中の磁化によっても形状が変化する。磁歪のひずみの程度は、ppm（10⁻⁶）オーダーであり、材料によって数 ppm から数 100ppm と異なっている。磁歪の発生は、磁化の向きの変化により強磁性を示すスピノーム相の磁化方向によって起こる[3]。実験的には、ひずみの量、磁化方向の变化（a_1, a_2, a_3）とひずみの測定方向の（β_1, β_2, β_3）の関数となり、立方晶では

\[
\frac{\delta l}{l} = \frac{3}{2} \lambda_{100} (a_1^2 \beta_1^2 + a_2^2 \beta_2^2 + a_3^2 \beta_3^2) + \lambda_{111} (a_1 a_2 \beta_1 \beta_2 + a_2 a_3 \beta_2 \beta_3 + a_3 a_1 \beta_3)
\]

で表される。ここで、\(\lambda_{100}\) と \(\lambda_{111}\) は、それぞれ [100] と [111] の方向の磁歪の値である。集合組織を持たない多結晶体では、磁歪が平均化されて次のようになる

\[
\frac{\delta l}{l} = \frac{2}{5} \lambda_{100} + \frac{3}{5} \lambda_{111}
\]

しかし、実際の多結晶材料には少なからず集合組織があり、多結晶材料の磁歪は集合組織に左右される。
2.2 幾つかの磁歪合金

比較的歴史のある磁歪合金に Fe-Al 系合金があり、この合金は Alfer とも呼ばれてきた[4]。この合金の磁歪は小さいが、基本的な磁歪特性を調べるために用いられてきた。一方、大きな磁歪を示す幾つかの合金を、その特性とともに Table 1 に示した[3]。Tb-Dy-Fe 系合金（Terfenol-D）は希土類系化合物合金であり、非常に大きな磁歪を示すが、高価な希土類元素（希少元素）を含み、加工性や耐食性が劣るという欠点がある。Fe-Co 基合金の中で Fe と Co の量がほぼ等しい組成の合金は Perpermur と呼ばれ、V を添加することにより特性が改善される[5]。他、軟磁性を示す Fe-Si-B 基の非晶質合金も比較的大きな磁歪を示すことが知られている[3]。また、歴史は比較的浅いが、大きな磁歪を示す合金として Fe-Ga 基合金がある[6-8]。この合金の特性の結晶方位依存性は大きく、磁歪の利用に当たってはその方位制御が必要になる。Fe-Ga 基合金の構造は Fe-Si 基合金と類似しているところが多いため、磁歪発現を考察するときには、Fe-Si 基合金の知見が生かされることが多い。本稿では、この Fe-Ga 基合金の構造やそれに関連した磁歪特性などについて述べる。

Table 1 Several properties of magnetostrictive alloys

<table>
<thead>
<tr>
<th></th>
<th>Tb-Dy-Fe</th>
<th>Fe-Co</th>
<th>Fe-Ga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetostriction (ppm)</td>
<td>ca. 2000</td>
<td>ca. 70</td>
<td>ca. 200</td>
</tr>
<tr>
<td>Corrosion resistance</td>
<td>×</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Rare-earth elements</td>
<td>○</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Workability</td>
<td>×</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Heat resistance</td>
<td>×</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

最近、磁石材料では希少元素（特に希土類元素）が多く使われることから、その地球上の存在比に関心が集まっている。参考のために、Fig.3 に地殻を構成する元素の存在割合を示した[9]。PGM と呼ばれる白金系元素や希土類元素の量は少なく、価格も高い。一方、市販されている Ga の価格は一般的な金属に比べ高価に思われるが、これは資源量が少ないことによるものではない。高価に思わわれるのは、その使用量が多くないことによると考えられる。Ga は、実際に Zn や Al などの製鍊工程で発生する副生成物として採取され[10]、使用量が多くなければ副生成物からの採取される量が増える可能性がある。実用素材の製造プロセスで低コスト化においては、原料原単位、エネルギー原単位などの因子を考慮しなければならず、さらに生産性や人件費も低コスト化に影響を及ぼす。このため、材料開発においては、ある程度高品質の材料を製造する技術を確立し、その後に低コスト化を目指すのが最近の研究開発の進め方であると言える。

Fig. 1 Abundance of elements versus atomic number.

3 Fe-Ga 合金の結晶構造と単結晶作製

強磁性体の磁歪の発現は結晶構造に関係しており、その例として、Fe-Ga 基合金で現れる A2 型、B2 型および D03 型の結晶構造を Fig.2 に示す。これらの基本的な結晶構造は体心立方構造であり、組成や温度に応じて不規則構造（A2 型）や規則構造（B2 型、D03 型）の異なる原子配列をとる。

Fig. 2 A2, B2, and D03 type crystal structures.

これらの結晶構造と関連して、Fig.3 に Fe-Ga 二元系の平衡状態図を示す。このような広い組成範囲の平衡状態に対して、比較的低温側の固相領域では、各構造をもつ相に関連した詳しい平衡状態図も調べられてきた[12]。これらの Fe-Ga 系状態図における構造と対
比させて、この合金の磁歪の複雑な組成依存性について検討が行われてきた[13]。
一方、Fig. 3 の高温側に着目すると、Fe 還元側で固相線と液相線の間に大きな温度差があり、溶融した合金を凝固させる過程で元素の偏析が起こりやすいことが示唆される。このため、単結晶の育成においては、組成が均一になるように作られる[14]。

Fig. 3 Phase diagram of Fe-Ga system [11].

融体からの単結晶の作製方法には、Bridgmann 法、FZ 法(Floating zone 法)、CZ 法(Czochralski 法)、μPD (Micro-pull down 法) などがある。例えば、Fig. 4(a) は、福田結晶技術研究所において引き上げに成功した単結晶インゴットを示している。アルミナのつぼ（直径 100mm、高さ 100mm）に Fe-Ga 多結晶原料または Fe と Ga の原料を入れ、Ar ガス雰囲気中で融解させた後、＜100＞方位の種結晶を用いて引き上げた単結晶の例である。育成した結晶はかなり色に均一金属光沢を示し、化学組成はほぼ Fe₉₃Ga₂₇ で結晶上下の間で 2％未変の変動が見られた。また、結晶から蒸発した Ga ガスを装置チャンパ壁付着物として観察された。このため、単結晶大型化に Ga 蒸発の抑制や固相線と液相線との差より生じる偏析を考慮した組成変動の制御技術が必要となる。また、Fig. 4(b) には、大きなインゴットから直径 30mm、長さ 100mm 丸棒に加工した＜100＞Fe₉₃Ga₂₇ 単結晶の外観を示しており、インゴット内部に欠陥がほとんどないことを示している。

Fig. 4 (a) a large single crystal ingot grown by CZ process and (b) a rod shaped from an ingot.

4.1 強磁性体の磁歪と磁化過程

磁場によって強磁性体で起こる磁歪は、ジュール効果(Joule effect)とも呼ばれる。これに対し、応力によって磁場が変化する逆磁歪は、ヴィラーリ効果 (Villari effect) とも呼ばれる。これらの効果を示す磁歪合金における磁化過程や磁歪などは、弾性変形と密接に関係している。Fig. 5 は、棒状試料に磁場を印加したときに、試料の長さが変化する様子、およびその測定結果のプロットを模式的に示している。実際に測定される磁歪には、材料の組成方位や格子ひずみなどの多くの材料学的な因子が影響すると考えられている。

たとえば、Fe 基合金の磁性材料の特性は結晶方位に大きく依存する。Fe-Ga 合金の場合には、磁歪は磁化容易方向である＜100＞方向で最も大きいため、この種の合金を磁歪材料として使用するときには、大きな磁歪が得られる単結晶または方位集積度が高い多結晶材料（集合組織制御材）を用いると、高い特性が得られる。しかし、集合組織材で結晶方位集積度を高めても材料特性にはつながって出るため、まず単結晶を
作製して、その特性の方位依存性などを調べるのが効率的であることが多い。

Fe-Ga 基合金は、室温付近において強磁性合金を示し、このことと関連して、磁歪 \(\lambda \) を示す一般的な強磁性材料の磁化曲線 \(M-H \) 曲線）を Fig.6 に示す[15]。この図では、外部応力 \(\sigma \) により磁歪を応じて磁化曲線の形が変化する様子を示している。このような磁歪材料の磁化過程には、材料中の磁区構造の変化が関係しており、重力や外力による磁区の形状、磁壁の動きなどの解析が必要である。今後、それらの微細的構造に関する研究が求められている。

Fig.5 Schematic showing measurement of magnetostriction and a typical magnetostriction versus magnetic field.

4.2 結晶粒内の磁区構造

磁歪は一般に弾性ひずみ内で起こるが、それは磁区構造の変化に密接に関係していると考えられている。Fig.7 に、磁区の模式図を示しており、一つの結晶粒内でも異なる向きの磁気モーメントの磁区が存在し、体心立方構造の Fe-Ga 基合金中では磁気モーメントの向きは、一般に磁化容易方向の<100>となっている。これらの磁区構造は、外部応力だけでなく、結晶粒内の欠陥や残留応力などに影響されることが多い。

Fig.6 Influence of external stress (\(\sigma \)) on a magnetization curve (\(M-H \) curve) of a ferromagnetic material.

4.3 外部応力に伴う磁区構造の変化

上で示した静的な状態の磁区構造に対して、実際の材料などでは磁区構造の動的な変化が重要であることが多い。たとえば、変圧器に用いられる軟磁性材料では、磁区の動きが重要である[16]。変圧器では磁場によって磁区構造が変化するのでに対し、逆磁歪で用いられる磁歪合金では外力によって磁区構造が変化する。外力による磁区構造の例として、Fig.8 に Fe-Si 基合金（方向性電磁鋼板）における外部応力による磁区構造変化を模式的に示す[17]。このように、磁化過程や磁区構造の変化（磁区の移動）は、外部応力に敏感であり、Fe-Si 基合金の磁歪に対しては、結晶方位のずれによって生じるランセット磁区などが変圧器の性能に影響を及ぼしていると考えられている。Fe-Si 基合金を利用することによって、磁歪の影響を最小限にする工夫がなされるが、このような応力による磁区構造の変化に関する考え方は、磁歪合金の磁歪や逆磁歪の効果を活用するときに重要になると考えられる。

Fig.7 Two different magnetic domain structures.

Fig.8 Schematic illustration of magnetic domains of an Fe-Si alloy without stress (left) and under external stress (right).
4.3 単結晶の弾性率の方位依存性

Fe-Ga 基合金の磁化容易方向<100>は、この合金の弾性定数と密接に関係している。Table 2 は、異なる量の Ga を含む Fe-Ga 基合金の三つの方位の Young 率を示しており、Ga 量が増えると磁化容易方向<100>の弾性率が非常に小さくなることを示している[18]。これらの弾性率を大きく差したブロックを Fig. 9 に示す。このような特性のために、Fe-Ga 基合金の磁歪発現機構を検討するときには、一般的な弾性変形挙動も考慮される[19]。弾性変形によるひずみはテンソルの形で表されており、そのひずみには磁気的に発現するひずみの異方性にも関係する。また、Fe-Ga 基合金では結晶方位によっては Poisson 比も異常な値をとることが知られており、これらの特性に関連して Fe-Ga 基合金の力学的性質を第一原理計算を用いて検討した研究も行われてきた[20]。実際の磁歪には、複雑な磁区構造や残留ひずみにも関係するため、磁歪合金などの強磁性体の弾性限内の変化の発現機構を明らかにすることは今後の課題と言えよう。このような Fe 基合金の磁歪や弾性異方性は磁歪をもつ鋼材料でも大なり小さい生じるため、鋼材料の力学特性を厳密に検討するときには弾性異方性は重要なパラメータになると考えられる。

Table 3 Orientation dependence of Young’s modulus (GPa) of Fe-Ga binary alloys with different compositions.

<table>
<thead>
<tr>
<th>wt%Ga</th>
<th>$E_{[100]}$</th>
<th>$E_{[110]}$</th>
<th>$E_{[111]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>131</td>
<td>219</td>
<td>283</td>
</tr>
<tr>
<td>18</td>
<td>65</td>
<td>160</td>
<td>315</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>86</td>
<td>293</td>
</tr>
</tbody>
</table>

Fig. 9 Orientation dependence of Young’s modulus of Fe (left) and Fe-18%Ga alloy (right).

5 結言

本稿では、Fe-Ga 基合金を中心にした磁歪合金の構造、特性などに関して述べた。最近では、薄膜の磁歪合金も開発されており、たとえば Co-Fe 基合金も可能性となっている[21]。Fe-Ga 基合金の特徴的な特性を用いて、振動発電用の各種デバイスの設計などに関する研究が盛んに行われている[22-24]。これらのデバイスと磁歪合金の適合性の点から、幾つかの磁歪合金でも Fe-Ga 基合金が有望であり、今後はこの合金の磁歪特性の発現機構の解明により磁歪特性を向上させることが望まれている。特に、振動発電における周波数に適した逆磁歪発現の制御、そのときの磁区構造変化や磁歪体積などに関しては、解明すべき点が多い。すなわち、磁区を比較的観察しやすい焼結合金などを中心にして、磁歪や逆磁歪に及ぼす応力などの影響を明らかにする必要があると考えられる。一方、磁歪が小さい方向性電磁飾板の集合組織制御は、長い間をかけて研究され、その特性向上は極端に近い状態に来ている。Fe-Ga 基合金とも集合組織をもたせることが可能であるが、通常の圧延や焼結などのプロセスでは、集合組織を向上させる条件を見つけるのに長時間を要することが予想される。このため、単結晶育成や集合組織制御のプロセスにより材料を作り込むことが期待されている。

謝辞

磁歪合金のデバイスへの応用に関する様々な議論をして頂いている金沢大学の上野敏幸先生、磁歪発現と格子ひずみの関係について議論していただいている東京都大の今福宗行先生などの皆様に感謝いたします。

参考文献

