円筒型磁束収束板を用いた誘導加熱処理による無方向性電磁鋼板のベクトル磁気特性評価

Evaluation of Vector Magnetic Properties of a Non-oriented Electrical Steel Sheet with Induction Heating Treatment by using Cylindrical Magnetic Flux Concentration Plate

Yuichiro KAI (Mem.), Masato ENOKIZONO (Mem.)

This paper presents influence of induction heating treatment with a cylindrical magnetic flux concentration plate on vector magnetic properties of a non-oriented electrical steel sheet. The non-oriented electrical steel sheet is heated by using induction heating method. The vector magnetic properties of the non-oriented electrical steel sheet under alternating magnetic flux and rotating magnetic flux conditions are measured with a easily vector magnetic property measurement system. From these results, it was clarified that amplitude and the inclination angle of the loci of the magnetic field strength vector differ by changing the heating time and voltage. In addition, it is possible to decrease the maximum magnetic field strength, coercive force and the magnetic power loss of the non-oriented electrical steel sheet by using the induction heating.

Keywords: cylindrical magnetic flux concentration plate, induction heating, non-oriented electrical steel sheet, vector magnetic property.

(2016年11月24日受付)

1 緒言

モータや変圧器等の電気機器の鉄心材料の1つとして電磁鋼板が用いられており、機器の低損失、高効率化のためには、材料特性の評価と活用技術が必要不可欠である。

著者らは、応力下における電磁鋼板のベクトル磁気特性を測定し、局所または圧縮によって応力磁気異方性が生じ応力によって磁気損失が低減する最適条件があることを明らかにした[1-3]。これらの結果を踏まえ、応力を積極的に利用することによって電磁鋼板の磁気特性を改善できることがわかった。そこで、電磁鋼板に応力を印加するために、誘導加熱技術に着目した。誘導加熱を用いた場合、加熱コイルが作る磁束を打ち消すように鋼板面内に渦電流が発生し、渦電流によるジュール熱によって温度が上昇する。さらに、温度分布が不均一な場合には、熱応力が発生し、電磁鋼板に応力を印加できると考えられる。そこで、鋼板面内に生じる渦電流を制御するために、円筒型磁束収束板(Cylindrical magnetic concentration plate, CMFCP)を用いた誘導加熱コイル提案し、局所部における渦電流密度の向上に有効であることを示した[4]。

本論文では、円筒型磁束収束板構造の誘導加熱コイルを用いて、無方向性電磁鋼板に誘導加熱処理を施し、その効果について検討したので報告する。

2 実験装置及び方法

2.1 誘導加熱装置

誘導加熱電源は、アロニックス製、型番CM20/10、出力20 kW、周波数5k〜15kHzである。今回用いた誘導加熱時の周波数は、12.5 kHzである。また、誘導加熱電源は、加熱コイルに印加する電圧の大きさと時間を調整可能であり、加熱電圧を50〜300V、加熱時間を10〜60sまで変化させた。

2.2 円筒型磁束収束板を用いた誘導加熱コイル

Fig.1に誘導加熱コイルの構造を示す。Fig.1(a)に示すように、円筒型磁束収束板の中に加熱コイルが挿入されている構造である。Fig.1(b)に円筒型磁束収束板とコイルの断面寸法を示す。円筒型磁束収束板には、ス
リットと穴が設けられている。磁場中に磁束収束板を置いた場合、収束板内に磁束を妨げる方向に渦電流が流れる。スリットがない場合は、渦電流は導体内で同じ方向に渦電流が流れる。一方、スリットを設けることによって磁束収束板の内側と外側では渦電流の流れる方向が異なり、外側では磁束を減少させるよう渦電流が流れ、内側では表層の磁束を増やすように渦電流が流れ磁束収束板の中心に磁束が集中する。さらに、これまでの検討結果から、磁束収束板構造を円筒型構造にすることによって、加熱コイルの漏れ磁束が減少し、局所部に渦電流密度を向上させることができた[4]。

Fig. 2 に円筒型磁束収束板の有無における磁束線分布を比較した結果を示す。本解析では、三次元軸対称有限要素法を用いており、導体内における電位を考慮することで、スリットによる鋼板内の渦電流経路の違いを模擬し解析を行った。Fig. 2 に示すように、円筒型磁束収束板を用いることで、磁束の広がりが大幅に減少し、試料の中心付近に磁束を集中させることができる[4]。

2.3 測定装置

Fig. 3 に測定システムを示す。励磁ヨークを用いて二方向から励磁を行い、VH センサを用いて誘導加熱処理付近の x および y 方向の磁束密度と磁界強度波形を測定する。パソコンにて励磁波形を作成し、D/A コンバータから励磁電圧を出力し、パワーアンプを通じた後、励磁コイルに電圧が印加される。その後、VH セ
Fig. 4 Measurement method of heating temperature of non-oriented electrical steel sheet.

Fig. 5 Temperature characteristic by change the applied voltage and heating time.

Fig. 6 Magnetic flux conditions.

4.2 回転磁束下におけるベクトル磁気特性

まず、無方向性電磁钢板の磁気異方性を及ぼす誘導加熱処理の影響を検討するため、回転磁束下におけるベクトル磁気特性を測定する。

Fig. 7 に磁束密度ベクトル軌跡を示す。磁束条件は、

\[|B_{\text{max}}| = 0.1 \, \text{T} \]

磁束密度ベクトル軌跡は直線である。Fig. 8 に加熱条件を変化させた時の磁界強度ベクトル軌跡を示す。Fig. 8(a) に示すように、電圧に対して磁界強度ベクトル軌跡はほとんど変化していない。Fig. 8(b) に示すように、加熱時間が 10 〜 50 s では磁界強度ベクトル
トル軌跡が変化しなかったが、60 s のときに磁界強度ベクトル軌跡が大きく変化した。特に、x 方向の磁界強度の値が増加し、y 方向の磁界強度の値が減少した。

Fig. 9 に加熱条件に対する回転磁束の磁気損失を示す。各成分の磁気損失を次式にて算出した。

\[W_{mx} = \frac{1}{\rho} \int_{0}^{1/\alpha} H_x \frac{\partial B_y}{\partial t} dt \]

ここで、\(W_{mx} \) と \(W_{my} \) は x 及び y 成分の磁気損失、\(f \) は励磁周波数、\(\rho \) は材料密度である。Fig.9(a) より電圧に対して各成分の磁気損失の値はほとんど変化していない。一方、Fig. 9(b) に示すように加熱時間を変化させた場合、60 s の条件において、全体の磁気損失は増加しており、\(W_{mx} \) の値が増加し、\(W_{my} \) の値が減少した。

以上の結果から、誘導加熱によって誘導磁気異方性が生じる加熱条件があることがわかった。加熱時間が 60 s の条件において、回転磁束の全体の磁気損失は増加するが、y 成分の磁気損失は減少することを明らかにした。

4.3 交差磁束におけるベクトル磁気特性

先ほど磁気特性が大きく変化した熱処理材(200 V, 60 s)に着目し、交差磁束におけるベクトル磁気特性について詳細に検討する。
Fig. 10 Vector magnetic properties of non-oriented electrical steel sheet without the induction heating.

Fig. 11 Vector magnetic properties of non-oriented electrical steel sheet with the induction heating.

Fig. 12 Magnetic properties of x and y components as a function of θ_h.

Fig. 10 と Fig. 11 に交磁束下におけるベクトル磁気特性の測定結果を示す。磁束条件として、Fig. 10(a) と Fig. 11(a) に示すように、磁束密度ベクトルの大きさを$B_{\text{max}}=0.1$ T とし、$\theta_h=0 \sim 180^\circ$ まで変化させた。磁束密度ベクトルの方向を変化させることによって、磁界強度ベクトルの軌跡も変化した。誘導加熱処理前
では，$\theta_b = 0^\circ$の時と比較して，$\theta_b = 90^\circ$の時に磁界強度の大きさが増加しているが，これは圧延磁気異方性の影響と考えられる。一方，導加熱処理後においては，導加熱処理前の磁気特性と比較して，$\theta_b = 0^\circ$の時に磁界強度の大きさが増加し，$\theta_b = 90^\circ$の時に磁界強度の大きさが減少した。さらに，導加熱を施すことによってx成分のヒステリシスループ$(B_x - H_x)$の磁界強度や保磁力の値が増加し，y成分のヒステリシスループ$(B_y - H_y)$の磁界強度や保磁力の値が減少した。

Fig. 12 にq_bに対するx及びy成分の最大磁界強度，保磁力，残留磁束密度と磁気損失を示す。Fig. 12 に示すように導加熱処理後においてq_bに対する各磁気特性は変化しており，$\theta_b = 0^\circ$の時のx成分の最大磁界強度H_{max}，保磁力H_{sat}と磁気損失W_mは増加し，圧延方向の磁気特性が劣化した。一方，$\theta_b = 90^\circ$に近づくにつれてy成分の最大磁界強度H_{max}，保磁力H_{sat}と磁気損失W_mは減少しており，導加熱処理によって直角方向の磁気特性が改善した。また，各成分の残留磁束密度B_aとB_aは，最大磁界強度や保磁力と比較して，導加熱処理の影響が小さかった。

Fig. 13 にq_bに対する磁気損失W_mと変化率ΔW_mを示す。磁気損失と磁気損失の変化率は次式にて算出した。

$$ W_m = W_{m1} + W_{m2} \quad (3) $$

$$ \varepsilon_{W_m} = \frac{W_m(With\ IH) - W_m(Without\ IH)}{W_m(Without\ IH)} \times 100 \quad (4) $$

ここで，$W_m(Without\ IH)$は，導加熱処理前の磁気損失，$W_m(With\ IH)$は導加熱処理後の磁気損失である。

Fig. 12 に示すように，q_bに対して磁気損失も変化しており，$\theta_b = 90^\circ$の時に磁気損失の値が約40%減少した。一方，$\theta_b = 0^\circ$と180°においては，磁気損失は約60%増加した。

以上の結果から，無方向性電磁鋼板に導加熱処理を施すことによって，圧延方向の磁気特性は劣化し，直角方向の磁気特性が改善することがわかった。

5 まとめ

本論文では，無方向性電磁鋼板に導加熱処理を施し，そのベクトル磁気特性測定結果を報告した。以下に，得られた知見を示す。

(1) 円筒型磁束収束板を用いた加熱コイルによって無方向性電磁鋼板を加熱し，印加電圧及び加熱時間の増加に伴い，鋼板中心温度が上昇することを示した。

(2) 誘導加熱処理を施した無方向性電磁鋼板の回転磁束下におけるベクトル磁気特性を測定し，今回の加熱条件(200 V, 60 s)において，誘導磁気異方性が生じることを明らかにした。

(3) 交番磁束下におけるベクトル磁気特性を測定し，励磁方向に対して最大磁界強度，保磁力や磁気損失が異なることを明らかにした。特に，導加熱処理によって圧延方向直角方向の磁気特性が改善しており，直角方向の磁気損失は約40%減少した。よって，今回提案した加熱コイルを用いたモータ鉄心の誘導加熱処理によってモータの高効率と低損失化が可能と考えられる。

参考文献

