ボンド磁石の射出成形プロセス連成解析の円筒金型モデルへの適用

Application of injection molding process coupled analysis of bonded magnet to cylindrical mold model

Toya KITAMURA (Non Mem.), Katsuhiro HIRATA (Mem.), Fumikazu MIYASAKA (Mem.),
Yohei UEMATSU (Non Mem.), Satoshi YAMAMOTO (Non Mem.), Masatoshi ITO (Non Mem.),
Masanobu KAWAZOE (Non Mem.)

A bonded magnet is a permanent magnet molded by mixing magnetic powder and resin. Injection molding, one of the molding methods, has the advantage of greater freedom of shape than other molding methods, but it is difficult to understand the behavior of the resin during molding, resulting in variations in the density and magnetic properties of the molded product. Therefore, a coupled analysis method of the particle method and the magnetic moment method has been proposed to understand the resin behavior. In this study, we used this coupled analysis method to evaluate the behavior of resin during injection molding of bonded magnets in a cylindrical mold model with multiple injection ports placed at equal intervals.

Keywords: bonded magnet, injection molding, meshless analysis method, particle method, magnetic moment method.

(2021年11月5日受付，2022年2月24日再受付)

1 緒言

ボンド磁石は、磁性粉体と樹脂を混ぜ合わせて成形した永久磁石である。小型・複雑形状に成形できる利点から、ハードディスクドライブに内蔵されている小型モータなどに使用されている。成形方法の一つである射出成形は、他の成形方法と比べ形状自由度が高い[1]という利点があるが、成形時の樹脂挙動の把握が困難であるため、成形中に成形品の密度や磁気特性にぼつかりが発生するという課題がある。この結果、実験的にボンド磁石の射出成形条件の最適パラメータを求めるには数多くの試行が必要となり、その最適化が困難なものにしている。

そこで、本稿では数値の射出口が等隔間に設けられた円筒型の金型モデルに対して、本解析手法を適用して、射出成形時の樹脂挙動を明らかにし、実験結果との比較を行い良好な結果が得られたので報告する。

2 解析手法

本解析手法では、ボンド磁石の射出成形の成形過程を数値解析で追うには、流体解析および温度解析および磁場解析を行う必要があり、流体解析と温度解析を粒子法、磁場解析を磁気モーメント法によって連成解析を行う。本章では、双方の手法について紹介を行う。

2.1 支配方程式

本解析では、磁性粉体を含む溶融樹脂を、軟性高分子の非圧縮高粘性流体として取り扱う。そのため、流体の運動方程式は、以下に示す非圧縮性流れに関するNavier-Stokes 方程式である。

\[
\frac{D\mathbf{u}}{Dt} = -\frac{1}{\rho} \nabla P + \nabla \cdot (\mu \nabla \mathbf{u}) + \mathbf{g} + \frac{f}{\rho} \quad (1)
\]

ただし、\(\mathbf{u} \) は流体の速度、\(\rho \) は流体の密度、\(P \) は圧力、\(\mu \) は動粘性係数、\(\mathbf{g} \) は重力加速度を示す。また、\(f \) は流体に加わる単位体積あたりの外力であり、磁性流体現象の場合は磁力がこの外力に当たる。また、\(D/Dt \) はラグランジュ微分を示しており、流体とともに移動する計算点の視点での時間微分である。固定された計算点の視点での時間微分であるオイラー的記述に比べて、流体の移流項の計算が必要なく、流体の時間微分を容易に扱うことができる。また、ラグランジュ微分は実
用的には通常の時間微分と同様に扱って差し支えない。
また、式(1)は解析空間内で流体の質量保存則である下式の条件の下、離散化される。

$$ \nabla \cdot \mathbf{u} = 0 $$ (2)

また、温度解析の支配方程式は、以下に示す熱伝導方程式を用いて、流体解析同様、粒子法で離散化を行う。

$$ \rho C_p \frac{DT}{Dt} = k \nabla^2 T + w $$ (3)

dただし、C_p は定圧比熱、T は計算点の温度、k は熱伝導率、w は単位体積当たりの発熱量を示す。

一方、磁場解析手法には前述のとり一様積分方程式法の一つである磁気モーメント法を用いる。磁気モーメント法の解説は[3]に詳述。まず、解析領域に強制電流が存在しないとする。また、ある直方体をなす閉領域 V の中に磁化 M が一様に分布していると仮定する。この時、任意の点における磁界強度 H は次の磁化に関する体積積分によって表すことができる。

$$ H = - \frac{1}{4\pi \mu_0} \int_V M \cdot \nabla \left(\frac{1}{|r|} \right) dV $$ (4)

μ_0 は真空の透磁率、$|r|$ は計算点と関連する直方体のノルムを示す。磁気モーメント法では、磁化を励起された磁性体を小さな磁石として扱うことにより磁場を計算する。

また、ある磁性体領域 i において、磁束密度 B_i は以下の式で与えられる。

$$ B_i = \mu_0 H_c + \mu_0 \sum_{j \neq i} H_{ji} + M_i $$ (5)

H_c はソースの作る磁界強度、H_{ji} は磁性体領域 j が磁性体領域 i の位置に作る磁界強度、M_i は磁性体領域 i が持つ磁化である。H_c は式(4)で計算する。また、磁束密度は磁性体領域 i の磁気感受率 χ_i を用いて、以下のよう表現できる。

$$ B_i = (1 + \chi_i) \left(\mu_0 H_c + \mu_0 \sum_{j \neq i} H_{ji} \right) $$ (6)

式(5), (6)より B を消去すれば、磁場の支配方程式となる体積積分方程式を得る。

$$ -\mu_0 \chi_i \sum_{j \neq i} H_{ji} + M_i = \mu_0 \chi_i H_c $$ (7)

式(7)を磁性体領域の数だけ連立し、磁化について解くことにより、磁性体領域同士の相互作用による磁化の変化を計算することができる。

2.2 粒子法

粒子法は流体などの連続体を有限個の微小粒子で近似し、各粒子を計算点として支配方程式を離散化する手法である。差分法や有限要素法のように解析空間を小領域に分割したメッシュが必要なため、メッシュレス法と呼ばれている。本手法では、粒子が計算点として扱われ、かつ粒子が物理量を持ったまま流体とともに移動するので、前述のラグランジュ微分を扱うことが可能である。そのため、本手法において流体の移流項の計算は不要となる。粒子法には、SPH(Smoothed Particle Hydrodynamics), 重み付き最小二乗法(Weighted Least Squares Method)に基づくメッシュレス法などの手法が存在するが、本研究では式(1)の微分差分法の離散化手法として、MPS(Moving Particle Semi-implicit/ Simulation)法[5]を採用した。以下、MPS法を解説する。

MPS法では式(1), (2), 式(3)の勾配とラプラシアンの微分演算子に対して、ある粒子 i とそのある粒子 j から影響半径 r_c 以内に存在し、粒子 i に影響を及ぼす周辺粒子であると判定した粒子 j (Fig. 1)との粒子相互作用モデルをそれぞれ用いて離散化するため、粒子数密度を用いる。

$$ n_i = \sum_{j \neq i} w(|r|) $$ (8)

$$ w(|r|) = \begin{cases} \frac{r_c}{|r|} - 1 & (|r| < r_c) \\ 0 & (|r| \geq r_c) \end{cases} $$ (9)

粒子数密度 n_i は周辺粒子 j の加重関数 $w(|r|)$ の総和である (式(8))。周辺粒子 j との距離が小さいほど大きくなるように、加重関数 $w(|r|)$ は式(9)を用いた。また本稿では、影響半径 r_c を初期粒子間距離の2.5倍とした。

また、MPS法の勾配モデルおよびラプラシアンモデ
2.3 高精度粒子法

2.3.1 高精度生成項

MPS 法では単純解法が用いられ、式(1)の右辺第1項の圧力項を無視して移動させた粒子の座標を、質量保存則を満たすように、圧力場の陰的計算により修正する。この時の支配方程式が圧力の Poisson 方程式

\begin{equation}
\langle \nabla^2 P \rangle_{l+1}^k = -\frac{\rho}{n_0}\nabla^2 \left(\frac{\partial n}{\partial t} \right)
\end{equation}

である。ただし、k はステップ数、\Delta t は計算時間幅。n*は等速移動後の粒子数密度である。しかし、陰的計算で行列計算の収束速度を伴うので、陰的計算後の粒子数密度の値は厳密にはn0に一致せず、結果として圧力振動を発生させる。

そこで、式(13)を粒子数密度の実質微分

\begin{equation}
\langle \nabla^2 P \rangle_{l+1}^k = -\frac{\rho}{n_0}\nabla^2 \left(\frac{\partial n}{\partial t} \right)
\end{equation}

と書き換え、さらに式(8)を用いると、

\begin{equation}
\langle \nabla^2 P \rangle_{l+1}^k = -\frac{\rho}{n_0}\nabla^2 \sum_{j\neq i} w(|r_{ij}|) \frac{\partial n}{\partial t}
\end{equation}

となる。重み関数の時間微分を微分の連鎖律を用いて

\begin{equation}
\langle \nabla^2 P \rangle_{l+1}^k = -\frac{\rho}{n_0}\nabla^2 \sum_{j\neq i} \frac{\partial w}{\partial t} \frac{\partial n}{\partial t} \frac{\partial|\mathbf{r}_{ij}|}{\partial t} + \frac{\partial w}{\partial |\mathbf{r}_{ij}|} \frac{\partial|\mathbf{r}_{ij}|}{\partial t}
\end{equation}

が得られる[6]。ただし、\mathbf{u}_{ij}は粒子 j の粒子 i に対する相対速度である。このように Poisson 方程式の生成項の評価を詳細化した MPS 法を MPS-HS(High order Source term)法と呼ぶ。

2.3.2 誤差補正生成項

前述 MPS-HS 法を用いても、陰解法の精度の限界などにより、各時間ステップにおける誤差や時間進行とともに累積する誤差が生じ、粒子数密度が変動する。

この問題を解決するために、

\begin{equation}
\langle \nabla^2 P \rangle_{l+1}^k = -\frac{\rho}{n_0}\nabla^2 \left(\frac{\partial n}{\partial t} \right)
\end{equation}

\begin{equation}
-\frac{\partial_e}{\partial|\mathbf{r}_{ij}|} \frac{\partial n}{\partial t} \frac{\partial|\mathbf{r}_{ij}|}{\partial t}
\end{equation}

のように式(14)に粒子数密度の瞬間値の変動に対する補正項と粒子数密度の標準値からの偏差に対する補正項を導入した[7]。これらの補正項を導入した MPS 法を MPS-HS-ECS(Error Compensating parts in the Source term)と呼び、本研究ではこれを流体解析に使用した。

2.4 連成手法

本研究において、流体解析と、温度解析および磁場解析との連成は乱流状により行われる。具体的には、式(1)の動粘性係数 \nu に熱伝導方程式から求めた温度から導出する粘性係数 \mu を用い、外力 \mathbf{f} に磁気モーメント法により求めた単位体積当たりの磁気力を代入する。

粘性係数 \mu は、Power-law モデルに W.L.F.則に基づく温度ソフトファクター \alpha_T を適用したモデルを使用した[8]。

\begin{equation}
\mu = a_T \mu_0 |\mathbf{u}|^{n-1}
\end{equation}

\begin{equation}
\alpha_T = \exp \left\{ -\frac{C_1 (T - T_5)}{C_2 + T - T_5} \right\}
\end{equation}

\begin{equation}|\mathbf{u}| = \sqrt{2D / D}
\end{equation}

\begin{equation}
D = \frac{1}{2} \{ (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) \}
\end{equation}

ただし、\mu_0 はせん断速度を 0 m/s とした際の粘性係数、|\mathbf{u}|はせん断速度、\nu はべき乗数、T は溶融樹脂の温度、T_5 は基準温度、C_1 と C_2 はパラメータを示す。

磁気力をケルビン力と考え、流体解析における外力とした。磁気力 \mathbf{f}_{\text{em}} は、

\begin{equation}
\mathbf{f}_{\text{em}} = \mathbf{M} \cdot \nabla \mathbf{H}
\end{equation}

を求めた。この磁気力 \mathbf{f}_{\text{em}} は体積力として式(1)の外力 \mathbf{f} に代入することで、流体解析と磁場解析を連成した。

\nabla \mathbf{H} は磁界強度勾配テンソルで

\begin{equation}
\nabla \mathbf{H} = \left[\begin{array}{cccc}
\frac{\partial H_x}{\partial x} & \frac{\partial H_x}{\partial y} & \frac{\partial H_x}{\partial z} \\
\frac{\partial H_y}{\partial x} & \frac{\partial H_y}{\partial y} & \frac{\partial H_y}{\partial z} \\
\frac{\partial H_z}{\partial x} & \frac{\partial H_z}{\partial y} & \frac{\partial H_z}{\partial z}
\end{array} \right]
\end{equation}

と求め、離散化には重み付き最小二乗法を用いた。粒子が飛散すると急激に近傍粒子数が少なくなるので、MPS 法では離散化することができない。そこで、磁界
3 ボンド磁石の射出成形プロセスの数値解析

前章で述べた解析手法によるボンド磁石の射出成形プロセス解析の再現性を確認するため、ボンド磁石の射出成形の実験を行った。本章では、解析モデルおよび実験条件についての紹介を行った後、ショートショットにより得られた樹脂の挙動と解析結果を比較する。

3.1 解析モデル

解析モデルを Fig. 3 に示す。射出成形による完成品が径 90 mm、外径 102 mm、高さ 22 mm となるように金型をモデル化した。また、溶融樹脂が Fig. 3 の上側から、矢印の向きに 12 個のゲートから金型へ流れ込むようにした。ゲートの直径は 3 mm、高さは 6 mm、ゲート中心間距離は 95 mm とモデル化した。

溶融樹脂の射出を流入境界で模擬した。流入境界の手法を Fig. 4 に示す。まず、移動壁を動かして流体を動かす。ある時点まで移動壁が動くと、流体に一番近い移動壁を流体に変更する。それと同時に、移動壁を追加して動かす。それを繰り返すことで流入境界とした。

着磁用磁石は 12 個あり、金型の内側部分に配置した。着磁用磁石の磁化方向を Fig. 3 の矢印で示す。解析条件を Table 1 に示す。なお、解析領域は対称性を利用して 1/6 領域とし、両側には対称境界として温度解析を行わない壁粒子を配置した。

<table>
<thead>
<tr>
<th>Table 1 Analysis conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size [mm]</td>
</tr>
<tr>
<td>Particle number density [/mm³]</td>
</tr>
<tr>
<td>Time interval [s]</td>
</tr>
<tr>
<td>Density of the molten resin [kg/m³]</td>
</tr>
<tr>
<td>Viscosity coefficient of the molten resin [Pa s]</td>
</tr>
<tr>
<td>Thermal conductivity of the molten resin [W/(m K)]</td>
</tr>
<tr>
<td>Thermal conductivity of the mold [W/(m K)]</td>
</tr>
<tr>
<td>Specific heat of the molten resin [J/(kg K)]</td>
</tr>
<tr>
<td>Specific heat of the mold [J/(kg K)]</td>
</tr>
<tr>
<td>Freezing point of the molten resin [K]</td>
</tr>
<tr>
<td>Relative permeability of the molten resin</td>
</tr>
<tr>
<td>Magnetization of magnet [T]</td>
</tr>
<tr>
<td>Initial temperature of the molten resin [K]</td>
</tr>
<tr>
<td>Temperature of the mold [K]</td>
</tr>
<tr>
<td>Velocity of the inlet boundary [m/s]</td>
</tr>
</tbody>
</table>
3.2 実験条件

射出成形の実験で用いた装置の概要をFig.5に示す。射出成形機は、日本製鋼所（JSW）製J50MEIH スクリュKという横向きの成形機を使用した。製品を成形する際の重力の向きはFig.3のy方向の正向きである。製品材料はガラス繊維を含むポリプロピレンを使用した。また、ガラス繊維の平均長さが0.18 mmのガラス繊維と、これらを結合する樹脂材料には、ナイロン12を使用した。これにより、射出成形機の成形部の内側に配置した。実際の射出時には、圧縮・膨張から一定速度で指名時間まで充填した後、保圧へ切り替えた。射出速度は39.0 mm/sとした。これは解析におけるゲートから出る溶融樹脂の流速が2.5 m/sであることと同様である。

3.3 解析結果と実験結果の比較

Fig.6にポンド磁石の射出成形プロセスの解析結果の円周方向の断面図を示す。ここから、ゲートから流した樹脂は底面に到着した後、円周方向へ広がっていき、最後にゲート間の下部が充填する流動様相が分かれる。これは、樹脂の粘性係数が高く底面に付いた樹脂が広がらないまま樹脂が充填され続けるため先に充填された樹脂が押し出されたからだと考えられる。

また、完成時の充填量を100%としたときに、70%、80%、90%分の樹脂を充填させるショートショット成形実験を行った結果をFig.7に示す。ここからゲート間の下部が最後に充填されていることが確認できるため、定性的に樹脂挙動が一致できた。

4 結言

本研究では、粒子法と磁気モーメント法の連成解析を用いて、複数の射出口が等間隔に設けられた円筒型の金型モデルに対して、ポンド磁石の射出成形の数値解析を行った。また、射出成形の実験を行い、樹脂挙動についての本解析の妥当性を検討した。

その結果、底面に付いた樹脂が広がらないまま樹脂が充填され続けるため先に充填された樹脂が押し出され最後にゲート間の下部が充填することが分かった。ショートショット成形実験との比較により定性的な一致が確認できた。

参考文献

Fig. 6 Snapshots of pressure distribution.

(a) 0 s.
(b) 0.01 s.
(c) 0.06 s.
(d) 0.10 s.
(e) 0.14 s.
(f) 0.18 s.
(g) 0.185 s

[Pressure distribution images are shown here with different time stamps (a) 0 s, (b) 0.01 s, (c) 0.06 s, (d) 0.10 s, (e) 0.14 s, (f) 0.18 s, and (g) 0.185 s].

Fig. 7 Experimental results of short shot molding.

(a) 70%.
(b) 80%.
(c) 90%

[Three rows of experimental results images are shown with (a) 70%, (b) 80%, and (c) 90%].