μバリエーションとタイヤ特性の関係について*
-ブラッシュモデルを用いたタイヤ過渡特性の表現-

模井 大亮* 河村 和彦*

Relationship between Frictional Variations and Tire Characteristics
-An improvement to Brush model using the Transient Characteristics-

Daisuke Yokoi Kazuhiko Kawamura

This paper explores the relationship between the oscillatory variations of the frictional forces developed in braked tires and the several kinds of tire characteristics obtained from experiments. Among others, the transfer function of tires when excited in fore-aft direction is then highlighted, and the fundamental role of the tread rubber is investigated in terms of the transient properties by the aid of the so-called brush model.

Key Words: Tire, Anti-lock braking system (ABS), Numerical analysis/ Brush model, Frictional variations

1. はじめに

近年、ABS（Anti-lock braking system）の普及により、タイヤ側にもABSに適した特性が求められている。ABS機能の現象は複雑であるが、その中の一つにμバリエーションがある。これは、ABSの作動中に最大摩擦係数を示す、あるスリップ率における摩擦係数μの変動を定義できる。実際に、これを小さくする事で、制動距離の短縮に効果があると考えられており、例えば、タイヤと路面間の摩擦係数を随時測定し、ABSの制動側からこれを小さくする事を試みた研究例が報告されている。また、タイヤ側でもスリップ率に対するμの変動の変動とタイヤの特性を取り扱った研究例がある。例えば、台車上試験機における研究が挙げられる。

本研究では、乾燥路面、湿潤路面のような比較的μが高い路面を対象とし、μバリエーションとタイヤ特性の関係についての観察を行った。前半では、実車試験、台車上実験の結果から、実験を中心にμバリエーションとタイヤ特性の比較を行う事で、両者の関係を把握する事を試みており、後半では、ブラッシュモデルに過渡特性のパラメータを組み込む事で、実験結果を再現できる事を提案している。また、本研究は、μバリエーションと関連するタイヤ特性を明らかにする事で、これを利用して（小さくする）タイヤ特性を提示する事を目的とする。

2. 実車試験条件及びμバリエーション評価方法

μバリエーションの現象を確認する為、215/60R16のラジアルタイヤにてABS作動中におけるμの履歴の評価を行った。なお、4本中3本はサマータイヤであり、1本はスタッドレスタイヤである。試験条件は、乾燥路面と湿潤路面の2種類を

*2009年5月22日受理 2009年5月22日自動車技術会春季学術講演会において発表。

(1) 2) 東洋ゴム工業(株) (664-0847兵庫県伊丹市藤ノ木2-2-13)

Fig.1 Tire slip ratio vs frictional coefficient (μ)
with ABS(measurement)

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tire</td>
<td>Summer Tire</td>
<td>Summer Tire</td>
<td>STUBLESS Tire</td>
</tr>
<tr>
<td>Pattern</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

[Test Conditions]
- Load 6011N(Front Left)
- Inner Pressure: 230kPa
- Test speed 100km/h: 60km/h
- Road condition: Dry/Wet

Fig.2 Test tires and test conditions

車両に取り付けた非接触式速度計、左前輪に装着した6分力計を用いてμスリップ率特性の計測を行い、時系列でABS作動中のμのビック値、ボトム値を算出し、その差分の平均
μパリエーションとタイヤ特性の関係について

値をμパリエーションと定義した。（図3）

Fig.3 Result of μ with ABS: Analytical method of μ variations

3. タイヤ平均μとμパリエーションの関係

乾燥路条件、湿滑路条件にてμパリエーションとABS作動中の平均μを比較したものを図4に示す。両者は比例関係にあり、μが低くなると、μパリエーションも小さくなる傾向がある。ただし、スタッドレスタイヤを除くと、比例関係とは言い難く、μ以外にもパリエーションに影響する要素が存在する事を示唆している。

Fig.4 Result of μ average vs μ variations

4. 台上材特性とμパリエーションの関係

4.1 前後加振テストによるサイド特性の測定

タイヤμスリップ率特性がパリエーションを発生する要因の一つとして、タイヤ幅着領域における過渡特性の影響が考えられる。ここでタイヤ幅着領域とは、タイヤは滑りを伴う前の領域を定義される。タイヤは粘弾性体であるゴムで構成されており、幅着領域、つまり滑りを生じない領域においては、変位（入力）に対し、軸力（出力）の応答は数値が生じる事が知られている。この特性とμパリエーションの関係を

調査する為、台車加振試験機を用いて、実車試験を行ったタイヤについて、タイヤ動特性の調査を行った。試験機の概要、試験条件を図5に示す。

前後加振時の変位に対する軸力（Fx/dx）の応答特性を解析し、実車試験を行った条件でのABSの作動周波数を10Hzと仮定して、この周波数におけるFx/dxのゲイン、位相とμパリエーションの関係についての調査を行った。ここでゲインは単位変位変位あたりの軸力を表しており、これが大きい場合は、前後方向の剛性が高い事を示している。一方、位相は変位と軸力のずれを表しており、これが大きいかと相関がある。

加振実験を行った結果を図6に示す。ゲインについては、μパリエーションとは関係が見られず、位相については、スタッドレスタイヤ（D）を除けば、位相が小さいタイヤはμパリエーションも小さくなる傾向が確認された。

これから、μパリエーションはゲインよりも、位相特性が影響している事が示唆される。

Fig.5 Shaker test conditions (Bench test)

Fig.6 Result from Shaker test vs μ variations
4.2 実車 μ 勾配と前後力緩和長との関係について

一般に、タイヤ前後方向の過渡特性を表す指標として、前後力緩和長です。前後力緩和長とは、制動トルクを付与してから規定前後力に達するまでの転動距離を表し、前後方向における過渡特性の指標値として扱われる。一方、横向きではこれにあたる特性として、横力緩和長がある。また、実車では前後力緩和長にあたる特性として、プレーキをかけた瞬間からのμの立ち上がりの勾配（以後、μ勾配と呼ぶ）がそれに関与すると考えられる。そこで、タイヤ前後力緩和長を台車で測定し、実車μ勾配との比較を行い、両者の関係を検討した。

両者の計測結果を図7、8に示す。前後力緩和長については、転動途中で制動トルクを付与し、規定前後力（2800N、μ=0.5に相当）に達した時の転動距離を測定し、実車μ勾配については、プレーキを踏んだ時点で、規定μ（μ=0.5）に達するまでの勾配を評価した。

Fig.7 Longitudinal relaxation length results (Bench test)

それぞれ、前後力緩和長と実車μ勾配、加振実験での位相を比較した結果を図9に示す。3者とも相関を有しており、加振実験での位相-μパリエーションで相関から外れていたスタッドレスタイヤについても、相関を有する結果が得られた。

Fig.8 Result of μ gradient at prescribed μ by actual car

Fig.9 Left: Result of longitudinal relaxation length vs μ gradient
Right: Result of shaker Fx/dx phase vs μ gradient

以上、これまでの実験より以下の結果が得られた。
1. μパリエーションはタイヤ路面μに影響を受け、μが高い程大きくなる傾向である。（図4）
2. μが同程度のタイヤであれば、μパリエーションは加振実験によって得られた位相と比例する傾向である。（図6）
3. 前後力緩和長（実車μ勾配）についても、加振実験によって得られた位相と比例する傾向である。ただし、μの絶対値には依存しない。（図9）

前後力緩和長（実車μ勾配）は、タイヤの凝着領域における過渡特性と考えられる事から、前後加振をした場合の位相特性を扱うことができる。一方、μパリエーションに関しては、図4の結果より、μの絶対値がμパリエーションに影響を与えていると推察されるのに加え、図9よりタイヤの凝着領域における過渡特性についても影響がある事が推測できる。そこで、ブラッシュモデルを用いて、実験結果が説明可能なかの検討を行った。

5. ブラッシュモデルによる検討
5.1 過渡特性を考慮したブラッシュモデルの概要
理論検討を行う場合のタイヤモデルは自由度が少なく、パラメータの検討が容易なブラッシュモデルを用いた。ブラッシュモデルの概要を図10に示す。

Fig.10 Outline of Brush model

踏み込み側から、タイヤトレッドが弾性変形を起こす事で変位が徐々に大きくなる区間を凝着領域（adhesion area）と定義
し、滑りに移行する領域を滑り領域（sliding area）と定義できる。なお、滑りから滑りに遷移するポインタをθ∞とすると、前方方向のトレッド弾性係数をCx、接地幅をw、接地長をLとすると、従来のブラッシュモデルは(1)，(2)の式で記述できる。

\[f_x(x,κ) = C_s xκ \quad (1) \]

\[F_x(κ) = w \int_0^L f_x(x,κ)dx + μ_s w \int_0^L p_z(x)dx \quad (2) \]

なお、κはスリップ率、μ_sは滑り摩擦係数、p_zは周方向接地圧の分布を表す。また、f_xは凝着領域での単位面積あたりのスリップ率に対する剛性を表しており、F_xは凝着領域と滑り領域の前後力を足したものとなる。

実験結果より、凝着領域の過渡特性は、変位に対する軸力の変化で例えたと仮定でき、加振実験によって得られた変位をブラッシュモデルに組み込み、トレッド弾性係数Cxを以下のような1次遅れ系として定義する。

\[C_s(x) = K x \left(\frac{1}{1 + \frac{θ(κ)}{V}} \right) \quad (3) \]

ここで、Kxはタイヤスリップ剛性、θは変位に対する軸力の変化、Vは車速、wはABS作動角速度、sはブラッシュ積算子を表している。ここからABS作動角速度におけるCxのゲインC_s、相関を求める。次に位置を用いて、以下の式でスリップ率κの遅れ成分を考える。

\[κ' = κ(t - τ) \quad (4) \]

\[γ = \frac{2θ(κ)}{w} \quad (5) \]

ここでκは作動スリップ率、κ'は遅れ成分を考慮したスリップ率、γはあるABS作動角速度ωでの作動スリップ率と遅れ成分を考慮したスリップ率の時間差である。以降、過渡特性を考慮したブラッシュモデルにおける前後力は以下で定義できる。

\[f_x(x,κ') = C_s' xκ' \quad (5) \]

\[F_x(κ') = w \int_0^L f_x(x,κ')dx + μ_s w \int_0^L p_z(x)dx \quad (6) \]

以上の式を用いて凝着領域の過渡特性を考慮したブラッシュモデルの構築を行った。

5.2 ブラッシュモデルによるμパリエーションの再現

過渡特性を考慮したブラッシュモデルが実際にμスリップ率特性にどのような影響を与えるかを仮定するにともない、実験との妥当性を検証する。実験を基に計測したABS制動時のスリップ率をブラッシュモデルに入力して計算を行った。従来のブラッシュモデルとの比較を図11、両者に共通して入力したスリップ率の時系列データを図12に示す。
フィラエーションを変化させるとμパリエーションも変化し、その大小関係は実験で説明できる結果となる。つまり、モデルでもタイヤ特性μは、μパリエーションに影響する結果が得られた。

次にμを一定とし、μを変化させたものを図14に示す。μが大きい程、μパリエーションも大きくなる事がわかる。以上より、過渡特性を考慮したブラッシュモデルは実験結果をよく表しており、μパリエーションの大小は、凝着領域の過渡特性（位相特性）と、滑り領域のμに依存すると言えそうである。

以上より、タイヤモデルにおいても凝着領域の過渡特性がμパリエーションに影響を及ぼしている事示す事が出来る。これより、μパリエーションを低減するには、タイヤ前後動特性の位相を低減する事が重要であると思われる。また、本研究では、滑利領域についてはμの絶対値の影響のみされているが、凝着領域と同様、滑利領域についても何らかの作用によりパリエーションが発生すると思われ、今後の研究の課題である。

6. まとめ
μパリエーションとタイヤ特性の関係について、実験を行うとともに、ブラッシュモデルで過渡特性を組み込んだモデルを構築し、比較・検討を行い、以下の結論を得た。

(1) μパリエーションは、タイヤ圧縮面のμ、前後動特性と関係を有し、位相を小さくする（応答性を良くする）または、μが小さくなるとパリエーションも小さくなる事を示した。
(2) 表車でのμ立ち上がり勾配と、前後力緩和長、前記位相が高い相関を有する事を示した。
(3) 凝着領域に過渡特性を考慮したブラッシュモデルを構築し、μパリエーションやμの立ち上がり勾配が説明できる可能性がある事を示した。

今後、さらにABSとタイヤ特性の関係を調査するとともに、ABSの効果のあるタイヤ設計要素についての研究を継続する。

参考文献
(1) 酒井秀男：タイヤ工学，グランプリ出版，pp185-190, 2002
(2) HANS B. PACEJK: TIRE AND VEHICLE DYNAMICS, SAE, pp22, pp339-403, 2002
(3) Takayoshi Kameda et al: Experimental Study on ABS Control by measuring forces between road surface and tire, Proceedings of 8th International Symposium on Advanced Vehicle Control, 2006
(5) 安部正人：自動車の運動と制御[第二版]，山海堂，pp30-47, 2003
(6) 二瓶光弥，清水満一：氷上におけるタイヤμ−s 特性のヒステリシスについて，日本ゴム協会誌（第75巻 第2号），2003.2
(7) 荒木一雄，酒井秀男：タイヤの制動動特性の理論的考察，自動車技術会学術講演前集第6巻，pp193-196, 1991.10