1. はじめに

筆者の自動車メーカーでは、1996年から燃料電池自動車（FCV）の開発を開始しており、FCVの公道での基礎データを収集することとFCV開発の社会への認知度向上を目的として2001年から日本においてはJHFC、北米においてはCaFCPにてフリート試験に参加している。

現行のFCVは、様々な新しい技術を投入した燃料電池スタックを搭載した車両である。このFCVは2006年4月から日本市場に限定リリース販売として投入され、通常の環境下における実用性の面においては十分なレベルとの評価を得ている。

しかしながら、本格的なFCV普及に向けては、低コスト化、小型化、高耐久性等の課題が残されている。その中で、燃料電池スタックの耐久性は重要な課題の一つである。燃料電池スタックの耐久性向上を図るためにFCVの走行データと個別耐久試験結果の重ね合わせを行い、車両走行時における燃料電池スタックの耐久性予測手法を開発した。耐久性予測手法の概念を述べ、FCVの走行データと実機結果を比較しその予測精度について検証する。

2. スタック耐久性改善の手法

2.1 車載スタック劣化の主要因

これまでの研究および発表1・2・3などに報告されているように、車載時燃料電池スタックの劣化の主要因は、起動時のカーボン腐食、負荷サイクル時のお塩酸、アシドル時などの微小電流時（高電位）のP1溶出および電解質劣化であると考えられている（表1）。

表1に記されていない他の劣化も予想されるが、後述するように分解抵抗によって大きな劣化に至っておらず、影響は小さいものと考えている。

（1）カーボン腐食

起動時にスタック内のアノードガス流路およびカソードガス流路の両方が空気（酸素）で満たされている状態からアノード側に電流を供給すると、水素が供給された部分に起電力が発生し、水素が供給されていない部分がその起電力によりカソード側が高電位になることによってカーボンが腐食するという劣化である。

2.2 P1溶出

負荷サイクルおよびアシドル時に、電位の変化により電解質が塩酸を含む状態になるためにP1が解離されると考えられる（図1）。P1が解離し、他のP1表面に析出したり、電解質融体に析出した物をリサイクルすることにより、触媒場内のP1粒子数は減少しつつP1粒子サイズが増大することによって初期状態と比較してP1表面積が減少する。その結果、性能が低下する。

Fig.1 Degradation mechanism during start-up

Vol.49, No.5, September 2009.
Table 1  Fuel cell operating modes and major types of degradation

<table>
<thead>
<tr>
<th>Operating mode</th>
<th>Degradation</th>
<th>Main cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start-up</td>
<td>Cathode catalyst surface area loss</td>
<td>Cathode carbon support corrosion by high potential</td>
</tr>
<tr>
<td></td>
<td>Cathodic reactant gas diffusion deterioration</td>
<td></td>
</tr>
<tr>
<td>Load cycling</td>
<td>Cathode catalyst surface area loss</td>
<td>Cathode catalyst dissolution by potential cycling</td>
</tr>
<tr>
<td>Idling (low current)</td>
<td>Cathode catalyst surface area loss</td>
<td>Cathode catalyst dissolution by high potential</td>
</tr>
<tr>
<td></td>
<td>Membrane proton conductivity loss</td>
<td>Chemical decomposition by peroxide (radical) attack</td>
</tr>
</tbody>
</table>

Fig.2 Degradation mechanism of Pt dissolution

(3) 電極質膜劣化

アイドール型の電極質膜劣化は、電極質膜および触媒層内で
過酸化水素が発生し、それが分解する際にラジカルが電極質
を分解することによって電極質膜のプロトン伝導性が悪化し
性能が低下すると推測されている[15-18]。特に、温度・圧力
とされた過酸化水素分解活性を示すことが知られている
[19-20]。また、電極質膜の劣化の原因として生成された酸
素分子が触媒を被膜させることで二次的に性能低下を引き起こすこ
ともわかっている[21]。しかし、通常電流の基準条件において
は後述するが大きな影響は出ていない。

2.2. 各運転状態における劣化観察により実験

(1) 起動停止の劣化観察

起動停止時の劣化は、起動と停止に分けることができる。起
動時の劣化は、起動時のアイドールおよびカソード内のガス
組成およびガス供給等の起動制御方法によってカソード塩酸
部の電位が変化し、劣化度合いが異なる。起動制御方法が毎
回同じであれば、アイドールおよびカソード内の酸素濃度に
よって大きく劣化度合いが変化する。したがって停止時にカソード
内の酸素を全て消費したとしても、燃料電池ステックのガス
シール部やカソードの入口、出口配管から空気が流入して、拡散
してくることによって、カソード側は徐々に空気を巻き入れられ
ていく。また、アイドール内には電極質膜を通じてカソードから
空気（酸素）が透過することにとって、それが空気を巻き込む
から、停止後から起動されるまでに、カソード内の酸素濃度を
把握しておく必要があり、停止後から起動されるまでの時間
（放置時間）をパラメーターとしてアイドール、カソード内の酸
素濃度を取得した。

また、各酸素濃度（0%〜21%）における劣化量は、アイドールおよ
びカソード内空気雰囲気とした条件での台所起動耐久試験
結果と、要因としてごく一部の電解液濃度における劣化感
度から見通しもった。さらに、一般的な電流の（停止から起動
するまでの）放置時間毎度を把握することで起動劣化＋見通し
もった。

停止時の劣化は、毎回同じ条件にて停止され、ステックに
負荷サイクルが加わるものと考えられるため、台所にて起動
停止サイクルを繰り返すことによって劣化率を算出した。

以上をまとめると、起動停止劣化の観察もに必要なデータは下記の通り。

- 起動と停止を短時間で繰り返す電流耐久試験
- 停止後にステックを完全に空気中に置換してから起動
- カソード内酸素濃度に対する起動劣化度合い
- 放置時間（停止から起動するまでの時間）に対するステ
  カード内酸素濃度
- 車両の放置時間頻度

(2) 負荷サイクルの劣化観察

FCVが進行する際、アクセルのOFF/ONに伴い燃料電池ス
タックの出力が変動することで燃料電池スタックに電流およ
び電圧の変動が生じ、カソード側の酸素濃度に電流サイクルが
加える可能性が生じる。電位変動率によって劣化の大きさが
変化するため、燃料電池スタックに加える負荷を低負荷サイ
クル、中負荷サイクル、高負荷サイクルの3パターンとして、
それぞれ台所耐久試験を実施し、車両の出力頻度および上記3
パターンの回数・時間頻度を考慮し、負荷サイクル時の劣化
を観察もった。

以上をまとめると、負荷サイクル劣化の観察もに必要なデータは以下の通り。

- 低-中-高負荷サイクルの台所耐久試験
- 車両の出力頻度

(3) アイドールの劣化観察

アイドール型の劣化は先に述べた通り電極質膜劣化および触
媒層のPt溶解の2種類存在すると考えられるが、電解質膜劣
化よりも、Pt溶解による性能低下の方が大きい。これは、FCV
での燃料電池スタックの使用する方が常に高圧ではなく、また、
常にアイドール化することに起因している。そのため、アイ
ドル型の劣化観察もは、アイドールをある時間運転した後
に負荷を取り出されることによって電位を変動させると示すという条件にて、台車試験を実施し、荷重の出力変動からサイクル時間の変化を考慮し、アイルド時の電圧変動を見積もった。

以上をまとめると、アイルド劣化の見積もりに必要なデータは以下の通り。

- アイドリングを含む荷重サイクルの台車耐久試験
- 路面の出力変動

2.3. 台車耐久試験結果に基づくスタック耐久性見積もり結果

市場において FCV に加わる負荷を ICE 車の使われ方から予測し、それぞれの劣化モード別の劣化を単純に換算（式（1））することにより、スタックの劣化を見積もりもった。

\[ \Delta V_{\text{Stack}} = \Delta V_{\text{S/I}} + \Delta V_{\text{LC}} + \Delta V_{\text{Idle}} \] 　　(1)

\[ \Delta V_{\text{S/I}}：起動停止の劣化 \]
\[ \Delta V_{\text{LC}}：サイクルの劣化 \]
\[ \Delta V_{\text{Idle}}：アイドリングの劣化 \]

図 3 に ICE 車の走行データから設定した荷重入力があったと仮定した際の燃料電池スタックの運転モード劣化割合を示す。

Fig.3 Distribution of estimated FC stack degradation by operating mode

グラフに示すように、起動停止時の劣化は全体の劣化の 44% を占めており、非常に大きな劣化であることがわかる。また、荷重サイクル時の劣化とアイドリング時の劣化は全電力でなく、28%程度であり、荷重サイクル時の劣化は単体時間当たりの劣化が大きいもののアイドリングの時間の方が長いために同じという結果となった。一方、起動停止時と発電時（荷重サイクル＋アイドリング）に分けると、起動停止時の劣化 44% に対し、発電時が 28%となり、ほぼ同程度の劣化であることがわかる。

この結果は、現行の FCV 用に見積もったもののうち、起動・停止時の制御、発電時の制御などを考慮することによって、他の燃料電池スタックに比べ劣化見積もり手法を適用することが可能である。

3. 車両搭載時のスタック劣化

3.1. 車載スタックの性能低下

現行の FCV はこれまでに長く、国内および国際（米国、欧州なども含む）での多車台の搭載で用いており、車両の台車の性能低下を考慮している。

しかし、現状の都市圏においては、スタックの性能低下が徐々に顕現しており、各スタックの性能低下を踏まえた設計のため、走行データを踏まえてスタックの電圧を平均化し、運転環境を理解できるようなものを、より厳密に判断することによって性能低下を考慮した。この方法により、様々なスタックの劣化傾向を考慮した。

3.2. 各パラメータに対するスタックの性能推移

前章に示したように、車両搭載時の燃料電池スタックの性能低下は複数の劣化要因によるものとして見積もっているが、現状の車両データで同様の傾向があることを確認した。

図 4 に FCV 運用期間に対する燃料電池スタックの性能低下の関係を示す。運用期間が進むほど性能低下が大きくなっている傾向があるが、1年以下の運用期間があるにも関わらず、性能が低下していないものも見られる。これは、期間中の走行圧力が低力に少ないので車両のデータである。

Fig.4 Performance degradation as a function of FCV operation period

図 5 に FCV 運用時間に対する性能低下の関係を示す。運行時間に対して性能低下が大きくなっている。また、一部のデータを除いた多くの走行データにおいて、運行時間に比例して性能低下している傾向を示している。

図 6 に FCV 走行距離に対する性能低下の関係を示す。走行距離に対して性能低下が大きくなっているのを示す。比較的走行距離の短い車両でも性能低下しているスタックは多く存在することから、走行距離と性能低下の関連性が低いことがわかる。

図 7 に FCV 起動停止回数に対する性能低下の関係を示す。起動停止回数に対して性能低下が大きくなっている。

以上のことから、現状の走行データに基づき、性能低下要因を検討した結果、単一パラメータと性能低下の関係が非

常に強いものはないため、予測通り性能低下は数の要因によって起こっているものと考えられる。

Fig.5 Performance degradation as a function of FC stack operating time

Fig.6 Performance degradation as a function of FCV mileage

Fig.7 Performance degradation as a function of number of start/stop cycles

4. 実車実測の結果

前章までに、スタック劣化予測手法におけるスタック劣化要因と車載したスタック劣化度合いについて示してきた。本章では、スタック劣化実車実測と実験の劣化度合いの結果を比較することで、劣化実測の対応の程度を検証を行う。

4.1 スタック劣化予測と実車データの比較

車載したスタックの走行データから算出した性能低下率と、標準的な起動停止回数および発電機による負荷からスタック劣化予測手法を用いて算出した性能低下率の比較を検証した。

図8に、日本国内および北米で実測時間の比較的長い4台の車両の性能低下率と比較を示す。

Fig.8 Comparison of estimated and actual performance degradation for different operating modes

走行データから算出した性能低下率と、予測した性能低下率が良く一致した。総測定回数は、10台のデータから予測していた回数とそれほど大きく変わらないが、起動時間の頻度が急激に増えた長時間の起動回数がより多く、各車両とも各起動劣化の割合が急激に減少した。総測定時間は急激に大きく変わらないが、各車両で走行環境が急激に変化していた負荷率、負荷率の割合と異なり気温のため、各車両で起動の割合はそれぞれ大きく異なった。

図9に、詳細な走行履歴が明らかであり、1年半以上走行している車両の性能低下率と比較を示す。

Fig.9 Comparison of estimated and actual performance degradation
燃料電池スタックの電気化学的特性の観点から、耐久性予測手法の開発

車両の性能低下率と観察よりいまだ一致している。以上により、ある程度の稼働時間がある燃料電池スタックの劣化度合いとスタック劣化予測手法を用いて予測した劣化度合いは良好一致しているため、スタック劣化観察より手法の精度は高いことがわかった。

4.2. 車載スタック MEA の性能評価および分解調査

車両したスタックから一部の MEA だけを抜き取り、単セルにして性能評価および分解調査することによって、これまで予想してきたカーボン腐食と Pt 溶解が発生しているか、または電解質膜劣化の有無を確認した。

(i) I-V 評価

FCV における運転条件を再現し、単セルにて発電試験を行った結果と初期品の発電試験結果を図 10 に示す。

![Fig.10 Results of power generation performance tests (I-V characteristics)](image)

無負荷においては差異は見られないが、電流を取り出すことで電圧差が発生していることがわかる。各電流値における電圧差が電流に比例していないことから、電解質膜の抵抗増加の影響はほとんどないと考えられる。また、低負荷側の電圧低下はカーボン触媒層の活性化過電圧上昇時の持続傾向を示していることから、カーボン触媒層内の Pt 表面積が低下していると予想される。

(2) 電気化学的診断

I-V 性能の低下をさらに詳しく調査するため、アノードおよびカソードの触媒の表面積（ECA：Electrochemical surface area）を算出するためサイクリックポルタメトリー（CV：cyclic voltammetry）を実施した。初期品の値を基準として、図 11 に示す。

初期値と比較し、アノード側は約半分に低下しており、カソード側は約 3 分の 1 に低下している。アノードで起こる水素酸化反応の活性化、カソードで起こる酸素還元反応の活性化よりも非常に高いため、アノード側の ECA は性能に大きく影響しないが、逆にカソード側の ECA は性能に大きく影響するため、カソード側の ECA 低下でパックの性能が低下する。カーボン腐食 ECA 低下から計算される理論的な电压降下と性能低下がほぼ一致することから、電圧低下の主因がカーボン腐食 ECA 低下によるものであることが示された。

![Fig.11 Results of electrochemical diagnostic tests](image)
きた。また、電解質膜劣化の影響は非常に小さいこともわかっ
た。ステッカー劣化見込もと実際の劣化度合いが良く一致
していることから、ステッカー発生している劣化現象の主
因はカーボン黒およびPt溶解であるといえる。

5. ま と め

ステッカー劣化予測手法を確立した。本手法による観察位
には車載ステッカー劣化ともよく一致するから、車載ステッ
カーの耐久性を精度良く観察することができていることを確認
した。

ステッカー劣化は車載時間ではなく、ステッカー発電時間およ
び起動停止回数に比例して劣化している。このことは、車両
実験の前から予測しており、車載条件においても台上評価と
劣化に差がないことがから台上評価は車載条件を十分模擬で
きていることを確認した。

車載ステッカーの劣化要因を分離し、それぞれの劣化内容を
示した。起動時のカーボン腐食、負荷サイクルおよびアイド
ル時のPt溶解の劣化が大部分を占めていた。

参考文献