カーボンキャニスターにおけるブタン吸脱着性能評価（第2報）∗
—活性炭層におけるブタン拡散挙動の計算手法—

佐藤 一成1) 山崎 弘二1) 小林 敬幸2) 田中 皓之3) 速藤 浩史4) 水野 靖朗5)

Evaluation of Adsorption and Desorption Performance of Butane Gas in Carbon Canister (Second Report)
—Calculation of Butane Diffusion in Carbon Packed Bed—

Kazunari Sato Koji Yamazaki Noriyuki Kobayashi Hiroyuki Tanaka Hiroshi Endo Yasuo Mizuno

Carbon canister is an evaporative emission control device to prevent the release of evaporative fuel gas from gasoline tank by the gas adsorption with activated carbon. However, there is still concern that evaporative fuel gas is released into the atmosphere, even when the vehicle is parked, because of the diffusion caused by the concentration differences of adsorbed gas.

In this study, we conducted basic experiments and calculations to reveal the behavior of gas diffusion in carbon packed bed. As a result, we understand the mass transfer phenomenon in carbon packed bed. Furthermore, the gas diffusion can be estimated by numerical calculation.

Key Words: Emission, Fuel, Environment, Simulation/ Activated carbon, Adsorption, Diffusion, Breakthrough2)

1. 背景
　蒸発燃料ガスの排出を低減させるため、自動車にはカーボンキャニスター（以下、キャニスター）と呼ばれるガソリン蒸発防止装置（ELCD；Evaporation Loss Control Device）が装着されている。
　自動車が走行を停止した場合、ガソリンタンク内の温度と圧力が上昇することで蒸発した燃料ガスがドライヤポートから大気放出されると大気汚染へと繋がる。ELCDは燃料燃料中の燃料成分を大気中に放出させないように、キャニスターに充填された活性炭に蒸発燃料を物理的に吸着（チャージ）させた後、運転時の吸着による脱着（ページ）再生を繰り返すことによって半永久的に大気放出を防げるはずだが、近年のバージョン低減傾向に伴い蒸発燃料ガスの大気放出が懸念される。その理由としてDiurnal Breathing Loss（以下、DBL）試験時に見られる微小通過のように、脱着後にドライヤポートを開放したまま放置する過程（以下、ソーキ）で、脱着しきらなかった燃料成分がキャニスタ内に残存し、バージョン側からドライヤポート側へ生じる濃度勾配により燃料成分が拡散を起こすため、ドライヤポート側で高濃度になったガスがDBL試験時初期に微小通過を生じ、大気へ放出されてしまうことが考えられる。

この課題点を解決するために、活性炭充填層（以下、活性炭層）の多重構造化やハニカム構造化の対応策がとられが、車種や排出量によってキャニスターに必要な性能は異なり、各車種に対応したキャニスターの開発が必要となっていった。

前回報告までの研究成果により、キャニスターの吸脱着容量（ワーキングキャパシティ）を予測するための活性炭に対するガスの吸脱着現象の解明と数値計算による予測手法は確立したが、微小通過を定量的に把握して予測を行うためには、活性炭層内の拡散挙動を解くことが必須である。しかし、固体充填層の拡散挙動を定量的にした研究実績はいくつかあるものの、物理吸着を伴う多孔体充填層について研究を行った実績はない。

本研究では、キャニスターの小型化・高性能化を目指した微小通過制御のスタディを行うため、活性炭層内の蒸発燃料成分の拡散挙動の定量化と数値計算による拡散挙動の再現を試みた。

2. ブタンガス拡散実験
　活性炭層内での濃度勾配によるガスの拡散現象を把握するため、実際のキャニスターに使用されているガソリン蒸発吸着用活性炭（以下、本活性炭）を使用して、蒸発燃料ガスの主成分であるブタンとヘキサンの2成分系における拡散実験を行った。活性炭層内を拡散移動したブタンガス層が層外に排出された後と時間を測定して、シミュレーションとのフィッティング結果から活性炭層内のブタン移動速度を想定するものとした。

恒温条件での実験が行えるように、恒温槽に格納された
ステンレス製の円筒容器を用い、試験装置のガットで3つの容器に仕切った（容器 A・B・C）試験装置を用いて、各容器間を移動するブタン量を測定できるようにした。試験装置概略を図1に示す。

Fig.1 Schematic drawing of experimental device

容器Bには活性炭が充填されており、313[K]でブタンが平行吸着している。恒温槽内を313[K]に保ったままガットBを1000秒間開放して、容器Cに大気圧で充填した空気と容器Bに充填したブタンとで相互拡散させ、ガット開放1000秒後に容器BからCに導入したブタン濃度を測定する。

この行為を数回繰り返しながら、ガット開放にごとに容器BからCに移動したブタン濃度を測定した結果を図2に示す。ただし、毎回容器Bにはブタンを平行吸着させた状態を初期条件とし、かつフィッティング精度検証のため容器B内の活性炭層長さを15, 30, 45mmと変えた行った。

Fig.2 Concentration curves of n-butane in container C

3. 拡散シミュレーション
3.1. 仮定条件と基礎方程式

ソーカル時における活性炭層内でのブタンガスの拡散は、図3に示すように活性炭粒子の表面拡散、空隙内の分子拡散、そして吸着（膜拡散）が同時に起こるものと想定される。しかし、この現象を個別に解くことは現実的ではない。そこで、これらの現象をひとつのごく小さな拡散現象と考え、活性炭層におけるブタンの有効拡散係数を求めることとした。

Fig.3 Schematic drawing of n-butane transport in packed bed

活性炭層内において、ブタンの濃度勾配により発生する拡散を主とした物質移動現象を解析するにあたり、以下の仮定を設けた。

- 活性炭粒子は均一粒径の球形粒子であり、容器Bに一様に充填されている。
- 活性炭粒子のブタン吸着抵抗は表面拡散抵抗と膜拡散抵抗の2次方で表せる。
- 試験装置の円筒容器内は十分に熟伝導が大きく、活性炭粒子内を含む活性炭層内は等温系である。
- ガスの物性は恒温および一定とする。
- 活性炭層内における拡散の拡散抵抗は、すべての有効拡散係数として表す。ブタンと空気の相互拡散係数は同じ値である。
- 活性炭層内での物質移動は濃度勾配による拡散によってのみ起こる。

以上の仮定に基づいた活性炭層における2成分拡散移動の基礎方程式を次のよう与えた。

活性炭層内物質収支式:

$$\varepsilon \frac{\partial c}{\partial \theta} + D_e \frac{\partial^2 c}{\partial x^2} + \rho_A \frac{\partial q}{\partial \theta} = 0 \quad (1)$$

活性炭粒子内物質収支式:

$$\rho_B \frac{\partial q}{\partial \theta} = K_f a_e (C - C^*) \quad (2)$$

活性炭粒子内の物質移動は表面拡散が主体であることを仮定した鏡像推進法（以下、LDF）近似手法を用いて解いた。計算に実験した活性炭の諸物性値などを表1に示す。

Table.1 Experimental physical properties for simulation

<table>
<thead>
<tr>
<th>r [m]</th>
<th>A [W/(m·K)]</th>
<th>\varepsilon [-]</th>
<th>\rho_A [kg/m³]</th>
<th>C [J/kg·K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.14</td>
<td>0.88</td>
<td>332</td>
<td>837</td>
</tr>
</tbody>
</table>

吸着差に関する他の式や係数など計算条件の詳細は、前回報告のと同等とした。

3.2. 計算モデルと境界条件

実験結果では、活性炭層の長さに依存して容器Bから容器Cへのブタンの拡散速度が異なっている。シミュレーションにおいても実験同様に、活性炭層長さが異なるモデルを用意し、容器Bに充填された活性炭層ブタンが313[K]
で平衡吸着した状態を初期として、容器BからCに拡散移動するブタン濃度を計算した。

本活性炭層が有する有効拡散係数を把握するために、拡散移動量測定実験により得られた結果を基に、上述の収支式を有限体積法により解き、実験結果に適合するように試行錯誤法を用いて有効拡散係数を算出する。

計算に用いたモデルを図4に示す。

Fig.4 Schematic drawing of calculation model

計算対象となる活性炭を充填した容器は軸対称の管路であることから、計算時間短縮のために5°（360°）の軸対称モデルを作成した。また、フィッティングに必要なのは容器BからCへのブタン移動量であることから、容器Aはモデル化しなかった。

容器B（活性炭層）と容器Cの初期条件を以下に示す
\[\theta = 0, \quad 0 \leq x \leq r_b, \quad 0 \leq t \leq t_0 \]
\[T = T_{ini}, \quad C = C_{butane}, \quad q = q_{ini} \] (3)

\[\theta = 0, \quad 0 \leq x \leq r_b, \quad r_b \leq t \leq t_0 \]
\[T = T_{ini}, \quad C = C_{butane} \] (4)

\[\theta = 0, \quad 0 \leq x \leq r_b, \quad r_b \leq t \leq t_0 \]
\[T = T_{ini}, \quad C = C_{nitrogen} \] (5)

モデルは閉じた系であり、内部は等温系を仮定しているため、壁面は断熱とした。

活性炭粒子の境界条件を示す。
\[0 \leq r \leq r_b: \quad q = q_{ini}, \quad \frac{\partial q}{\partial r_A} = 0 \] (6)

これらの条件を用いてブタンと窒素の2成分の濃度勾配による拡散計算を行い、実験との比較により活性炭層内でのブタンの有効拡散係数を想定した。

活性炭層長さ15mmと45mmについて、1000秒間ゲートBを開放した各図ごとに容器BからCに移動したブタン濃度を実験と比較した結果を図5に示す。

3.3 フィッティング結果と考察

フィッティングしたブタンの有効拡散係数を図6の通りまとめた。

Fig.5 Concentration curves of n-butane in container C

Fig.6 Curve of effective diffusion coefficient
実測と比較した計算結果は良く一致しており、フィッティングが精度良く出来たが、有効拡散係数が活性炭層長さの開数となり定数として得ることができなかった。拡散係数は空間の温度、圧力、湿度の開数となるはずであり、空間の幾何学的寸法には依存しない。

フィッティングのためのシミュレーションは活性炭層内の温度変化が極めて小さいという仮定で行われたが、実際には吸着熱による温度変化がどの程度起こるか、長さ30mmの活性炭層の温度測定で確認した。結果を図7に示す。

Fig.7 Relative temperature and pressure profiles in packed bed

容器B内では吸着熱の発生による非等温系の変化が活性炭層内で起きていることがわかる。さらにゲートB開放と同時に急速に温度は低下しており、その後、だんだんに温度は回復していくのが初期温度までは到達しない。これは、ゲート開放と同時に急速に脱着したプロトンが容器B内の圧力を上昇させることで生じる対流が、物質移動と熱移動の律速となることが原因と考えられる。そして圧力が急激にするにつれて拡散が律速となり物質移動が起きるものと推測される。

そこで、温度の高い有効拡散係数を求めるため対流による物質移動と吸着熱も考慮した計算を行い、過渡的な容器Bの圧力変化について実際とのフィッティングを試みた。

4. 拡散+対流シミュレーション

活性炭層における拡散と対流による物質移動を計算するために、以下に基礎方程式と新たな方程式を加えた。

活性炭層内熱収支式:

\[\rho_b C_p \frac{\partial T}{\partial t} = k \left(\frac{\partial^2 T}{\partial x_i^2} + \frac{1}{R} \frac{\partial T}{\partial x_j} \right) + C_{c,pp} \mu_i \frac{\partial T}{\partial x_i} + \rho_A \frac{\partial q}{\partial \theta} \] (9)

対流項の計算に伴い、活性炭層を多孔質としてモデル化し、式(10)を用いて流れに対する抵抗を計算した。

活性炭層内抵抗式:

\[- K_{v,i} = \frac{\partial P}{\partial x_i} \] (10)

活性炭層内における抵抗係数: K は、Re 数が極めて小さいことを仮定して Blasius-Kozomy 式から求めた無次元係数を用いた。

また、運動方程式を解くことにより計算時間が長くなるため、容器 C でのプロトンの移動速度は十分に大きいものと仮定して容器Cはモデル化しなかった。ただし、容器BとCの間での物質移動を過渡的良好に計算するため、容器Cとして有効観点を1層のみ模型化面にモデル化した。

計算モデルを図8に示す。

Fig.8 Schematic drawing of calculation model

初期条件は 3.2 項と同様とし、境界条件を以下に示す

\[\theta = \theta_i, \quad \theta = \theta_b \sim \theta = \theta_{in}, \quad K_w = d / \lambda \] (12)

\[X_t \] がゼロのときの壁面境界は断熱とした。この条件で有効拡散係数を変数としたフィッティングを行った。活性炭層長さ30mmの試料で初期状態からゲート B を100秒間開放した後の容器 C の圧力と活性炭層内の温度変化について、それぞれ実測と比較した結果を図9に示す。
Fig.9 Profiles of relative temperature in container B and pressure in container C

実験の一環で確認できたので、両側に活性炭層長さ15mmと45mmについて容器Cの圧力変化についてフィッティング作業を行った。

ゲート開放後1000秒間における容器Cの圧力変化の履歴を、実験と計算で比較した結果を図10に示す。

Fig.10 Relative pressure profiles in container C

この結果、各長さの活性炭層モデルについて容器Cの圧力変化が実験と同様の傾向として得ることが出来た。

初期の圧力の立ち上がりに実験との差が認められたが、これはゲートBの厚さが15mmほどであることから、ゲート開放後にできる真空の空間が生じる急激な圧力低下が推進力となり物質移動を引き起こしたことが原因と考えられる。

今回のフィッティングから得られた有効拡散係数を用いて実際のキャニスターにおけるDBL性能を計算した。

5. 実機適用による確認

現象が把握しやすいように単純形状のキャニスターを用いて活性炭層内の拡散によるガスの移動を計算した。

計算に用いたモデルを図11に示す。

Fig.11 Schematic drawing of canister model for evaluation

新製の活性炭充填キャニスターの、蓄熱温度25℃にて、ブタン：窒素が1：1の混合気体を40g/hの速度でチャージして2.0g破壊までブタンを吸着させた。その後、窒素バージを3.0L/min×7minで行い、1時間ドレイン側を開放した状態でソーケさせた後、DBL試験を模倣して微圧なブタンガスをソーケ後のキャニスターにチャージして吸着量の変化を測定した。

同条件にてチャージからDBLまでを模倣した計算を行い、ブタンの吸着量の変化を適度的に計算した結果と実測と比較した。比較結果を図12に示す。

Fig.12 Adsorption amount profiles of Butane in packed bed

シミュレーションの結果、実験と同じ傾向で吸着量が変化していることが確認でき、図13と図14に示すソーケ中の活性炭層内のブタンガス吸着分布と温度分布が実際の現象と一致しているものと考えた。図の左方の時間はソーケ開始からの経過時間を示す。

Fig.13 Concentration diffusion profiles of Butane in packed bed by simulation
Fig.14 Temperature profiles of Butane in packed bed by simulation

6. まとめ
本活性炭層におけるブタンの拡散現象を実験とシミュレーションの両面から分析した結果を以下に示す。

○ 本活性炭層を用いたブタンと異素の2成分系での混合拡散実験から、圧力差による物質移動と濃度勾配による拡散移動が同時に起こっていることが確認できた。

○ 拡散実験とシミュレーション結果のフィッティングにより、本活性炭層内でのブタンガスの有効拡散係数を決定できた。

○ 確認できた有効拡散係数を用いて、シミュレーションにより吸着着からのDBLまでの一連の計算を行った結果、実測と良く合う計算結果を得ることが出来、キャニスターの性能を予測するための基礎技術が開発できた。

Nomenclature

C = gas concentration [kg · m⁻³]
C* = equilibrium gas concentration [kg · m⁻³]
Cbutane = density of butane [kg · m⁻³]
Cnitrogen = density of nitrogen [kg · m⁻³]
C_P = specific heat capacity of packed bed [J · kg⁻¹ · K⁻¹]
C_{p,f} = specific heat capacity of fluid [J · kg⁻¹ · K⁻¹]
D_s = surface diffusion coefficient [m² · s⁻¹]
D_e = effective diffusion coefficient [m² · s⁻¹]
d = thickness of container wall [m]
ε = void fraction of packed bed [-]
ΔH = heat of adsorption [J · kg⁻¹]
k = effective thermal conductivity of packed bed [W · m⁻¹ · K⁻¹]
K = resistance coefficient of packed bed [J]
K_w = wall resistance coefficient of container [J]
L_{m} = length of activated carbon layer [m]
L_{n} = length of container B [m]
L_0 = length of container B & C [m]
P = pressure [mmHg]
q = adsorbed amount [kg · kg⁻¹]
q_{init} = initial adsorbed amount [kg · kg⁻¹]
$q_\bar{q} = average adsorbed amount [kg · kg⁻¹]
q_{out} = transported butane amount [kg]
R_g = ideal gas constant [J · K⁻¹]
R = radial distance from center of packed bed [m]
R_m = radius of carbon packed bed [m]
R_n = radius of container C [m]
r = radial distance from center of carbon particle [m]
R_A = radius of carbon particle [m]
T = temperature [K]
T_w = wall temperature [K]
T_{init} = initial temperature [K]
τ_{ij} = viscosity component [kg · m⁻¹ · s⁻¹]
U_ijk = gas velocity [m · s⁻¹]
V_c = Volume of container C [m³]
X_ijk = cartesian coordinate [m]
$\rho_A = apparent density of carbon particle [kg · m⁻³]
\rho_B = apparent density of packed bed [kg · m⁻³]
\theta = time [s]
λ = thermal conductivity of container wall [W · m⁻¹ · K⁻¹]
K_{sw} = all-inclusive capacity factor of packed bed [s⁻¹]

参考文献
(1) 板倉秀宏ほか：キャニスタからのHC吹き抜け挙動解析，自動車技術研究論文集Vol.911, P.29-32(1998)
(2) 佐藤一成：カーボンキャニスターにおけるブタン吸着性能評価（第1報），自動車技術論文集，Vol.38，No.6，p.35-40(2007)