人間 - 自動車系を考慮したハイブリッドトラックの駆動力制御* —ドライビングシミュレータを用いた評価実験—

ダム ホアン フック林 喜三ポンサートーン ラクシンチャーランサック永井 正夫

Hybrid Truck Driving Torque Controller Considering Human-Vehicle System Dynamics - Experimental Evaluation by Using Driving Simulator -

Dang Hoang Phuc Ryuzo Hayashi Pongsasith Rasinchamroensak Masao Nagai

The key point of the research is to improve the eco-driving performance in a hybrid truck among various drivers. In the previous paper, a hybrid electric vehicle (HEV) controller consisting of an automatic gear controller and a hybrid torque distribution controller with a driving torque feedback compensator has been proposed and verified by simulations. In this paper, the proposed hybrid control system has been verified by a driving simulator with several real drivers. The result indicates that the driving performance and fuel economy of the HEV among various drivers were improved by using proposed hybrid control system.

Key Words: (Standardized) Human Engineering, Driver Behavior, Driving Simulator, Difference among Individuals (CI)

1. 語 言

現在、もっとも普及が期待されている燃費改善車として、ディーゼルエンジンとモータを使用したディーゼルハイブリッドトラック（以下、HEV）がある。本研究で対象となるHEVは既存のディーゼルトラック（以下、ICV）と比較して、燃費を最大30%以上向上させることが期待されている。しかしながら、実際の走行環境では、ドライバーの運転特性の違いによって、ハイブリッドシステムの燃費性能が十分に発揮できず、燃料消費率がバッテリーの使用率に大きく左右される。著者らは、HEVの燃費性能を向上させるため、エンジンの定常特性だけでなく、車両ダイナミクスとドライバーの加減速操作特性も考慮した燃費性能と加速性能を向上させるハイブリッド制御システムを提案し、シミュレーションにより、その有効性を明らかにした。しかし、実際の人間ドライバーが運動した場合の有効性は未だ実証されていない。そこで本研究では、前報で提案したハイブリッド制御システムに対して、ドライビングシミュレータを用いて、実際の人間に運動させることにより、提案したシステムの有効性を検証することを目的とする。

図1に、本研究で対象とするパラレル型ハイブリッドシステムを構成した小型トラックを示す。この小型トラックのハイブリッドシステムは、モータ/ジェネレータの両役割を担う交流同期電動機（以上、モータ）、ニッケル水素電池（以上、バッテリー）、ディーゼルエンジンで構成されている。この車両のハイブリッド制御モードとしては、ハイブリッド制御シス템からの指令によって、モータアシストモード、定速モード、発電モードが設定される。ハイブリッド制御システムは、車両やエンジン回転数、ドライバーのアクセルペダル開度などから最適なモータアシストトルクを算出して、ハイブリッド制御システムからの指令によって、加速する時にはエンジントルクのアシストを行い、また減速する時には車両エネルギーを電力として回生し、バッテリーに貯えることでエネルギー効率を高め、燃費の向上を目指している。また、バッテリーニュートン（SOC）が50%以下の場合は、エンジンの効率が低い低速時にはエンジンの回転数を高め、発電機を回して充電を行う。なお、対象車両のハードウェア上の理由からモータのみの走行は行わない。このハイブリッド制御システムは、既報（9）に詳述しているので、本報では略説を以下に記述するにとどめる。

Fig.1 Description of hybrid truck system

*2010年5月27日受理、2010年5月21日自動車技術学会新学術講演会において発表。
1)2-3-4) 東京農工大学（184-8588 小金井市東町2-24-16）
2. 統合ハイブリッド制御システム

前報では以下に示すような、3つの制御コンセプトからなる統合制御システムを提案した。その概要を図2に示す。1つ目は、シフトチェンジを制御することによって、エンジンの効率が高い領域にあるエンジン使用点を高効率領域に移動させる目標エンジントルク制御(2.1節)であり、2つ目は、既存ハイブリッド制御システムと同じように、エンジンが高効率領域で稼働するようにエンジンとモータのトルク配分を演算する一定トルクの配分制御(2.2節)であり、その概要を図3に示す。3つ目は、トルク応答の良いモータでハイブリッド駆動系全体のトルクの応答性を向上させ、目標速度に対する追従性の向上を目的とする目標トルク制御(2.3節)である。これらの制御を統合し、燃費性能と駆動性能を限定させるハイブリッド制御システムを提案し、シミュレーションでその有効性を示した。本報では、この制御システムをドライビングシミュレータに実装して実験を行うが、改めてその概要を以下に記述する。

![Fig.2 Block diagram of hybrid electric vehicle torque control system](image)

2.1 変速比による目標エンジントルク制御

本節では、変速比変化を演算し、制御することによって、エンジンを燃料消費率の良いエンジン回転数とエンジントルクで使用し、燃費性能の向上を目指す制御について述べる。まず、ドライバのアクセルペダル操作P_mとエンジン回転数n_1から求まるドライバの要求トルクT_mから、以下の式を用いて要求仕事量$W_{D,n}$を算出する。

$$W_{D,n} = T_m (P_m, n_1) \cdot \alpha \cdot 2\pi/60$$

ドライバの要求トルクから要求仕事量が求まる、等燃料消費率メンバップ上での出力曲線を描くことができる。この等出力曲線上で最も燃料消費率の小さい点がエンジンの最適運転点となる。この最適点でのエンジン回転数を最適エンジン回転数n_{opt}、エンジントルクを最適エンジントルクT_{opt}とする。次に、現在の車両状態と要求トルクに対して燃料消費率が良い最適運転点n_{opt}を計算する。この最適比は、走行速度と最適エンジン回転数から算出できる。ただし、対象車両のトランスミッションギャラリーは有段であるため、実際に出力する最適なギャラリーn_gは最適な変速比に対して以下の式で求める。なお、r_{in}はタイヤの半径、i_{opt}は最終変速比、i_sはトランスミッションギャラリーn_g段目の時の減速比である。

$$i_{opt} = \frac{2\pi r_{in}}{i_{opt} \cdot i_s}$$

2.2 エンジントルク特性に基づく一定トルクの配分制御

本節では、エンジンを効率の良い領域で使用するための、エンジンとモータの一定トルク配分制御について述べる。これには、従来のハイブリッド制御システムと同様の制御を用いる。変速比制御から出力されたトルクがハイブリッドの要求トルクとなる。この際に、エンジン制御用バナナマップG_{map}を使用する。そして、ハイブリッドの要求トルクとエンジン回転数からアンストークトルクマップM_{map}を介し、モータのアンストークトルクの指令値を算出し、ハイブリッドの要求トルクからこのトルク指令値を引いた値がエンジンへのトルク指令値となる。モータとエンジンのトルク指令値をそれぞれ式(4), 式(5)に示す。

【モータトルク指令値 u_m】

$$u_m = M_{map} (\omega_s, T_m)$$

【エンジントルク指令値 u_e】

$$u_e = T_{opt} - u_m$$

![Fig.3 Block diagram of conventional hybrid vehicle control system](image)

2.3 モータによる目標駆動トルク制御系

次に、加速時の駆動トルクの応答性を向上させるためにエンジントルクの遅れの補償を示す。一般的にディーゼルエンジンはトルク指令値から実際の軸出力に至るまでの応答が遅く、そこで、一次遅れ系を用いた応答性の良い目標モデルに追従するように補償を行う。
性を向上させるためには、応答性の悪いエンジンの配分を小さくし、応答性の良いモータの配分を大きくすることでより応答性の向上が期待できる。しかし、定常トルクの分配制御では、エンジンの使用点が最適領域になるように演算させているため、エンジンの使用点を動かすことは、膨脹の悪化につながらる。そこで本制御システムでは、エンジンによる膨脹は考えずに、図2の下部に示されているようにモータのみを用いたトルク補償を考える。ディーゼルエンジンとモータモデルはハイブリッド制御システムが送るトルク指示値から補助力が生成するまでのある遅れを待つため、本研究では一時遅れで出力するモデルと考え、以下のように表す。

【エンジンモデル】

\[T_e = \frac{1}{\tau_e + 1} u_e \] \hspace{1cm} (6)

【モータモデル】

\[T_m = \frac{1}{\tau_m + 1} u_m \] \hspace{1cm} (7)

ここで、\(u_e \) はハイブリッド制御システムからエンジンへのトルク指令値、\(u_m \) はハイブリッド制御システムからモータへのトルク指令値。\(\tau_e \) はエンジンの遅れ定数、\(\tau_m \) はモータの遅れ定数とする。

PID コントローラを用いて目標モデルの要求トルクと駆動トルクの偏差 \(e_T \) から本制御の出力 \(u_{ref} \) を演算する。以下に目標モデルの出力トルク、トルクの偏差 \(e_T \) と制御トルク \(u_{ref} \) の式を示す。なお、\(K_p, K_i, K_d \) は、PID コントローラのゲインである。\((K_p=0.1, K_i=0.05, K_d=0.005) \)

【目標モデル出力トルク】

\[T^* = \frac{1}{\tau_e + \tau_m} T_{ref} \] \hspace{1cm} (8)

【実トルクと目標モデルの出力トルクの偏差】

\[e_T = (T_e + T_m) - T^* \] \hspace{1cm} (9)

【制御トルク】

\[u_{ref} = K_p e_T + K_i \int e_T dt + K_d \frac{de_T}{dt} \] \hspace{1cm} (10)

3 実験による効果評価

3.1 ドライビングシミュレータ実験

(1) 目的 ドライバーの運転操作特性の違いによる制御効果の違いを検証するため、被験者に定常トルク配分制御システムのみを搭載したHEV（従来のHEV）と、前回の提案したシステム図2を搭載したHEVにより、それぞれ先送り運転を行わせたときの速度追従性と燃費を比較する。

<table>
<thead>
<tr>
<th>Driver</th>
<th>Age</th>
<th>Driving experience</th>
<th>Annual mileage</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>22</td>
<td>4 years</td>
<td>3000 km</td>
</tr>
<tr>
<td>D2</td>
<td>22</td>
<td>4 years</td>
<td>2000 km</td>
</tr>
<tr>
<td>D3</td>
<td>22</td>
<td>4 years</td>
<td>3000 km</td>
</tr>
<tr>
<td>D4</td>
<td>22</td>
<td>5 years</td>
<td>12000 km</td>
</tr>
<tr>
<td>D5</td>
<td>34</td>
<td>15 years</td>
<td>2000 km</td>
</tr>
<tr>
<td>D6</td>
<td>22</td>
<td>4 years</td>
<td>2000 km</td>
</tr>
<tr>
<td>D7</td>
<td>34</td>
<td>15 years</td>
<td>3000 km</td>
</tr>
</tbody>
</table>

(2) 被験者 実験では、運転特性にばらつきのある実際の一般ドライバーとして、自動車運転免許を有する20-30代の男性7名を被験者とした。表1に各被験者の年齢、運転歴、年間走行距離を示す。

(3) 実験装置 本研究では、図4に示すドライビングシミュレータ（DSと略記）を、トラック用に車両特性を変更して実験を行った。

Fig.4 Driving simulator

Fig.5 Driver-Hybrid truck system

DSは、車両運動を計算するホストコンピュータ、車両加速度を模倣する動揺装置、ステアリングシステム等のドライバインタフェースによって構成される。DSにインストールされている車両モデルは4輪フルモデルであり、タイヤモデルはマジックフォーミュラを用いた非線形タイヤモデルである。さらにホストコンピュータにはdSPACE社製のDSPボードが仮想される。DSPボードは付属ソフトウェアにより、Mathworks社製のMATLAB, Simulinkによって記述された任意の制御アルゴリズムを実装することが可能である。本研究で再現したハイブリッド制御システムの構成を図5に示す。再現したハイブリッドトラックを想定し、車両モデルのパラメータを表2の通り設定した。
表2 チューニングパラメータ

<table>
<thead>
<tr>
<th>定義</th>
<th>HEV</th>
<th>番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>車の重量</td>
<td>2400</td>
<td>kg</td>
</tr>
<tr>
<td>同軸距離</td>
<td>2.525</td>
<td>m</td>
</tr>
<tr>
<td>高度中心距離</td>
<td>1.4</td>
<td>m</td>
</tr>
<tr>
<td>距離</td>
<td>1.5</td>
<td>m</td>
</tr>
</tbody>
</table>

（4）実験条件
本論文では、駆動時のドライバの操作挙動のばらつきに対する加速度適応性能の改善提案である。性能の評価としては、特に加速時の性能評価に着目することとし、駆動制御を含むトータルの燃焼性能評価ではない、10・15 モードを参考にした加速のみのパラメータで検証した。実験シナリオとして DS 上に先行車を追い越す状況を設定した。走行ルートは片側 2 車線の高速道路の左側車線である。走行速度パターンは、走行開始前に先行車が一般的な加速度 0.68m/s²で加速し、50km/h の一定速度で走行して 2 段階目には先行車が振りかけで加速し、70km/h の一定速度で走行するパターンである。この場合、先行車のトランクにできるだけ追従するように運転することを想定している。ただし本研究では上記のような平均的な加速パラメータを考慮するため、従来制御における変速タイミングとしては、表3に示すような近似で対応するものとした。これは切り替え時のエンジン回転数が 1200-2200rpm が多いという知見に基づいて平均的な 2000rpm に対応している。被験者には事前に走行シナリオについて説明し、DS での運転操作に慣れるため十分な練習走行を行わせた上で実験を行った。被験者 3名は未経験のHEVの場合に提案したHEVの場合の各1トリップを行い、被験者7名が合計14トリップ分の実験を行った。

図6と図7には、走行実験の一例として、被験者 D3 の実験結果を示す。図6はモータトルクの時刻履歴図であり、図7はエンジンの出力履歴図である。図6はエンジンのトルクマップを示している。図6より提案した制御システムは、従来制御システムと比較してトルク差（要求トルクとトータルのエンジントルクの差）が減少し、駆動系のトルク応答性向上することがわかる。図7のトルクマップからわかるように、3つの制御コンセプトからなる統合制御システムの方がエンジンを効率の良い領域で使用するシステムになっていることが分かる。

一方、図8は車両の前進速度の挙動のペダル操作時刻履歴図を示している。図8によると、提案した制御システムは駆動系のトルク応答性向上のため、円滑なアクセルペダル操作となっており、また加速変動のピークが減少する傾向となっている。すなわち、提案した制御システムは円滑なランニングパフォーマンスに影響を与え、燃費に対して良い結果をもたらす傾向を示している。

以上より、提案した駆動制御によるトルク応答性の向上により、円滑な駆動性能と燃費性能の改善が期待できることがわかった。
Table 4. Experimental results

<table>
<thead>
<tr>
<th>Driver</th>
<th>FE_{np} [km/l]</th>
<th>ΔSOC [%]</th>
<th>FE_{np} [km/l]</th>
<th>$e_{a, avg}$ [m/s]</th>
<th>VA_{idx} [%]</th>
<th>$e_{a, avg}$ [m/s]</th>
<th>Improved FE_{np} [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver 1</td>
<td>5.65</td>
<td>-0.04</td>
<td>5.16</td>
<td>0.08</td>
<td>13.39</td>
<td>0.03</td>
<td>6.54</td>
</tr>
<tr>
<td>Driver 2</td>
<td>5.49</td>
<td>-3.65</td>
<td>5.05</td>
<td>0.07</td>
<td>9.61</td>
<td>0.02</td>
<td>6.48</td>
</tr>
<tr>
<td>Driver 3</td>
<td>5.42</td>
<td>-1.90</td>
<td>5.19</td>
<td>0.05</td>
<td>18.44</td>
<td>0.03</td>
<td>6.42</td>
</tr>
<tr>
<td>Driver 4</td>
<td>5.98</td>
<td>-4.05</td>
<td>5.49</td>
<td>0.09</td>
<td>13.28</td>
<td>0.03</td>
<td>6.47</td>
</tr>
<tr>
<td>Driver 5</td>
<td>5.30</td>
<td>-3.50</td>
<td>4.88</td>
<td>0.19</td>
<td>14.67</td>
<td>0.03</td>
<td>6.28</td>
</tr>
<tr>
<td>Driver 6</td>
<td>5.87</td>
<td>-4.34</td>
<td>5.34</td>
<td>0.03</td>
<td>13.44</td>
<td>0.03</td>
<td>6.32</td>
</tr>
<tr>
<td>Driver 7</td>
<td>5.58</td>
<td>-3.52</td>
<td>5.16</td>
<td>0.11</td>
<td>10.00</td>
<td>0.03</td>
<td>6.01</td>
</tr>
</tbody>
</table>

3.2 速度追従性能

本研究では、ドライビングパフォーマンスの評価として、表 5 で示す評価指標を用いて速度追従性能を分析する。従来システムと提案したシステムの場合について、全ての被験者の結果とドライビングパフォーマンスを図 4 に示す。

Table 5. Driving performance factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Interpretation</th>
<th>Denotation [unit]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average velocity error</td>
<td>Average error between preceding vehicle velocity and following vehicle velocity</td>
<td>e_v [m/s]</td>
</tr>
<tr>
<td>Average acceleration error</td>
<td>Average error between preceding vehicle acceleration and following vehicle acceleration</td>
<td>e_a [m/s²]</td>
</tr>
<tr>
<td>Acceleration with strong power demand</td>
<td>% of time when product of VA_{idx} [m/s²], this factor is connected to the existence of high power demand acceleration.</td>
<td></td>
</tr>
</tbody>
</table>

ドライビングパフォーマンスの検証のため、全ての被験者における速度追従誤差の二乗平均値を図 9 に示す。図 9 によると、提案した HEV の速度追従誤差の二乗平均値は、ドライバによって良くなったり悪くなったりしてその影響が異なることがわかる。

一方、加速追従性能の実験結果を図 10 に示す。図 10 よると、提案した HEV の場合は、全ての被験者の加速追従誤差が減少していることを示している。この結果から、提案した制御システムを用いることにより先行車追従時の加速追従性能が向上したといえる。

3.3 燃費性能

一般的に、ハイプリッド電気自動車においては、運転の前後を通じたパッテリの電流収支が正、すなわちパッテリ内部エネルギーの一部が運転に利用された場合は燃費が見掛け上向上し、主電池の電流収支が負、すなわちエンジン出力の一部がパッテリ充電に使われた場合は逆の傾向が現れることが予想される。このように、電流収支を伴う場合の燃費の評価と
した。本研究では、林田らにより提案されている、燃費測定値を一次回帰式に基づいて電流電圧ゼロ相当値に補正する次のような手法を用いる。まず、数値の初期 SOC をシステムに設定し、評価されるパラメータを設定後、SOC 変化量と燃費の提案した HEV と従来の HEV 両方を測定する。参考として表 6 に実験結果を示す。この結果を図 11 に示すように、線形回帰し、その傾きを求めるとき、実燃費は式(11)のように表される。

\[F_{\text{実}} = F_{\text{推定}} C_0 \times \Delta \text{SOC} \]

ここで、\(F_{\text{推定}} \) は補正後の実燃費、\(F_{\text{推定}} \) は見かけ上の燃費、\(\Delta \text{SOC} \) はバッテリー SOC の変化量、\(C_0 \) は線形回帰直線の傾きです。従来の HEV の場合 \(C_0 = 0.121 \)、提案した HEV の場合 \(C_0 = 0.095 \) となります。

この補正により実燃費の計算が可能となる。本論文において、特別な注意がない場合は「燃費」とは \(\Delta \text{SOC} \) によって補正された実燃費を示すこととし、後に示す各燃費のデータも補正後の実燃費である。

Table 6 Fuel Economics Adjusted for Net Battery Charge/Discharge

<table>
<thead>
<tr>
<th>Initial SOC [%]</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv. HEV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASOC [%]</td>
<td>1.89</td>
<td>0.73</td>
<td>-1.27</td>
<td>-2.13</td>
<td>-3.05</td>
<td>-3.04</td>
</tr>
<tr>
<td>(F_{\text{推定}}) [km/l]</td>
<td>4.90</td>
<td>4.99</td>
<td>5.30</td>
<td>5.39</td>
<td>5.47</td>
<td>5.47</td>
</tr>
<tr>
<td>Proposed HEV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASOC [%]</td>
<td>1.95</td>
<td>0.48</td>
<td>-5.25</td>
<td>-6.58</td>
<td>-8.60</td>
<td>-9.17</td>
</tr>
<tr>
<td>(F_{\text{推定}}) [km/l]</td>
<td>5.39</td>
<td>5.50</td>
<td>6.22</td>
<td>6.26</td>
<td>6.35</td>
<td>6.39</td>
</tr>
</tbody>
</table>

Fig.11 Apparent fuel economy respect to SOC fluctuation

本節では、提案したハイブリッド制御システムの燃費性能向上への効果を検証する。燃料消費量とパッテリー SOC 変化量の両方を考慮した実燃費の計算結果を図 12 に示す。表 4 に、実験における燃費性能の結果を示す。提案した HEV では従来の HEV に比べ、7 名の被験者で、燃費が最も 11.11%、最大 17.11%、平均 8.56% 向上させることができた。さらに、従来の HEV の見かけの燃費のばらつきは 12.74% であるのにに対し、提案した HEV の見かけの燃費性能のばらつきは 8.66% と低減されており、この効果は前報の効果と同様の傾向を示す。図 13 に、平均加速度変動の減少率と燃費の向上率の関係を示す。図 13 より、加速度変動が向上すると燃費も向上するということが分かる。これは、車両の加速度変動特性が向上するため、提案した HEV では図 14 に示すように VA が低減される。すなわち、高仕事率での加速度増加を考慮すると考えられる。これにより、エコドライビングパフォーマンスが向上していると考えられる。図 15 は平均加速度変動と燃費性能の関係を示す。図 15 より、提案した HEV では平均の加速度変動範囲のばらつきが低減するために、燃費性能のばらつきも低減していることがわかる。

以上のことから、提案する HEV では加速度変動特性が向上するため、ドライバーの運転操作に適しているが、かつ、ドライバーのエコドライビングパフォーマンスが向上することが分かった。

4. 結 言

本論文では、ハイブリッドトラック運転時における燃費を向上させ、また、ドライバーの違いによる燃費のばらつきを低減させることを目的とし、DS を用いた実験のドライバーの運転により、従来のハイブリッドトラックの制御手法を提案した制御手法について、車両挙動及び燃費性能を比較した。その結果、燃費性能のトラック安定性向上を向上させる制御により、加速度変動特性が向上し、7 名の被験者実験で、燃費を平均 8.56% 向上させることができることが分かった。さらに、先行車両のシミュレーションにおいて、ドライバーの運転操作の違いにより見かけの燃費のばらつきが、従来制御では 12.74% であるのに対し、提案手法では 8.66% にまで低減でき、本制御手法の有効性を確認した。

提案した制御手法により燃費の平均値とばらつきがともに改善するという実験結果は、既報 10 のドライバーの運転モデルによるシミュレーション結果の妥当性を裏付けるものと考えられる。なお、本論文の適用範囲はあくまで燃焼エンジンの加速度変動特性に限定されており、今後はエンジン回生、トータルの性能評価をする必要がある。そのため標準的な車両の燃費評価パネルによる統合制御システムの有効性を実験により検討していく必要がある。

最後に、実験とシミュレーションにおいて助言をいただいた本学博士後期課程准教授の鈴木真弘氏に感謝の意を表します。

参考文献

(1) Sebastien, D., Jimmy, L., Thierry, G., and Rimaux, J., "Control of a Parallel Hybrid Powertrain: Optimal Control"

