直接駆動式動弁系カム・フォロワの摩擦特性に関する研究

株式会社（名）
小川 永司

Study on Friction Characteristics of Cam and Follower for Direct-type Valve Train

Mitsuhiro Soejima Yoshiaki Ushijima Eiji Ogawa Toru Tanji

Regarding the cam and valve-lifter with an offset shim for the direct-type valve train in engines, the friction diagram, characteristics and their changes with the test duration have been examined with the test rig, so that effects of the shim surface finish, coating, running-in and contact mechanism on the reduction of friction have been evaluated. Mainly the followings were made obvious. (1) The effect of the surface finish with smaller roughness like an ELID mirror face grind is very large, but that of DLC coating is not so large. (2) The shim rotation by the traction force of cam changes the contact mechanism from the sliding to the rolling to make the friction lower. (3) The design is required to promote the formation of hydrodynamic lubricating oil-film between the shim and the valve-lifter.

Key Words: (Staandardized) Heat engine, Engine component, Tribology (Free) Friction, Direct-type Valve Train, Valve-lifter, Offset Shim Rotation, Surface Finish and Treatment, Oil-film Thickness (AI)

1. 緒 言
内燃機関の燃費改善は、二酸化炭素の排出量削減に効果的であり、ピストン系、油受系や動弁系の各要素部品の摩耗損失を低減し燃費を改善するドライポリシー技術の開発や活用に対する要求と期待が一段と増している(1)(2)。また、オイル消費が原因のガス転換装置装置のDPP(Diesel Particulate Filter)目詰まりやNOx還元触媒装置を防ぐために、エンジン油の灰分、りん分と硫黄分を減らすLow-SAPS(Low Sulfurized Ash, Phosphorous and Sulfur)化も急速である(3)(7)。

既報(3)(6)のように、動弁系カム・フォロワの摩耗や摩耗の低減すなわち燃費改善や摩擦経済化による性能と信頼性の向上が望まれる。ところ近年、動弁類の構造・形式の変更(8)(9)、表面加工・上げ方の方法や条件の改善、各種コーティング技術の活用など(10)(11)、その要求が強くになっている。なかでも、研磨レス・カム軸の研削(12)(13)、DLC(Diamond-Like Carbon)コーティング・フォロワの開発とそのエンジン油との相性などの研究(12)(13)が注目されている。

著者らは、カム・フォロワのすべり接触や転がり接触の各形態について、カム軸回転速度や表面粗さが摩擦に及ぼす影響を調べ、図1のように回転速度が高いほどすべり接触下でカム・フォロワ接触面及び平均の摩耗係数は減少するが、転がり接触下では逆に増大すること(14)(15)、表面粗さを小さくするほどすべり接触下で摩耗は減少するが、転がり接触下では逆に増大すること(16)(17)などを明らかにし、摩擦特性は接触の形態により大きく変化することを指摘した。

また既報(3)のように、動弁系の直動式DOHC回り止め付アルミニウム・リタクサ上で円周状のシール3が図2のようにカム①の軸方向にオフセットしたカム接触機械力でレコーディングによる摩擦試験を用い、シールカム当面歯面のDLCコーティングを施し、体質SABS5-30のLow-SAPS対策の無灰系清浄分散系配合DH-2級(3)(6)やZnDTP代替添加剤ZP(Zinc Phosphate)配合(8)(7)のエンジン油を適用する場合について、カム軸回転速度、最大接触荷重および温度の影響を調べ、図3の実験条件の設定値を基準平均しえって平均摩擦係数の比較のように、摩擦はDLCコーティングの有無とLow-SAPSエンジン油の種類で変化し、DLC

* 2010年10月5日受理。2010年10月1日自動車技術会秋

学術講演会において発表。1) 九州産業大学工学部813-8503瑞風市東区松奈台2-3-1
E-mail: soejima@ip.kyusyu-u.ac.jp2) 九州産業大学大学院(同上)
3) 4) 日本文具工業会(団) 3329-0114熊本県
下部会議長野町野木1111)
2. 実験方法

2.1 カム・シム摩耗の測定と評価の方法

カムとシムの接触に伴う摩耗を測定するためには、摩耗の測定を既報の方法に示したカム・フォロワ摩耗測定試験機を用いた。それらは、カム重録式バルブ・リフタの接触摩耗をモデルに既存のカム/スリッパーウィ・フォロワ接触摩耗試験機（1）をリニューアルしたものであり、図2のカム軸/オフセット（シム/バルブ・リフタ）構成のカム・フォロワ接触機内で、図4のようにカム試験片（1）とシム試験片（1）を接触させ、オフセット仕組みで荷重（1）をかけ、カム軸の回転に伴う両試験片間の摩耗をフォロワ試験片ホルダーに取付けて測定するものである。すなわち、フォロワ試験片ホルダーにシム付きのバルブ・リフタ部に相当し、軸方向内盤状のシム試験片をカム軸の方向へオフセットし、カム試験片の接触に伴う摩耗力でシム面のみを摩擦摩耗させるものである（10）。カム・シム摩耗の測定と評価は、以下のような実験条件と要領で行った。まず前報（1）と同様、図10や図11の測定例に示すように実験条件を変えることによる摩耗特性、摩耗力、摩耗係数内の摩耗係数について、そのカム角度変化のカム・シム接触時間当りの平均値や平均摩耗係数を求め、摩耗特性およびその変化を検討した。実験の条件は、最大摩擦係数（Lmax）400N、600Nおよび800N、カム軸回転速度（Ne）400rpm、800rpm、1200rpmおよび1600rpmならびに油温（T）70℃および110℃とした。その実験は、先に温度70℃で各接触荷重について全ての回転速度の条件で、その後に温度110℃で同じ荷重・速度の条件で摩耗を測定する一週の実験を一つの巡回とする要領の繰り返し実験であり、実験に要した時間は、各条件で約20分、一体1次と6次実験を行った。
巡で約7時間であった。面圧を各実験条件で5回測定して求めた平均摩擦係数を平均した値は、実験の反応毎に後の図7の約のように変化した。そこで、実験反応数すなわち時間の経過と共に変化する摩擦係数の図2、6、7実験条件の平均摩擦係数の総平均値の時的な変化を後述の図8のように図示、シミュレーション加工 suede および表面処理、カム・シミュレーション面接触によって変える摩擦特性を評価した。

2.2. 供試カムと供試試験

供試カムは、大きさが基準間隔17.4mm、幅13.5mm、幅位置0mmの材質がピッカース硬度5.8-7.6GPaのCr系焼結材で、その表面を通常研削仕上げ表面粗さが算術平均値Ra（または二乗平均平方根値Rms）の値で約0.13μm（約0.16μm）のものである。

また供試シリコンは、直径φ36mm、厚さ3mmの薄肉円板の材質がピッカース硬度5.1-8.3GPaの焼結材SCM415で、通常研削仕上げ表面粗さRa=0.11μm、Rrms=0.17μmのものの（Grindと記す）、鏡面研削仕上げしたRa=0.01μm、Rrms=0.015μmのもの（ELIDと記す）、通常研削仕上げ後に機械型DLC（CrN+a-C:H）を厚さ約3μmプラズマアシスト

3. 実験結果と考察

3.1. 摩擦とその時効的な変化

図5・図6は、Grind仕上げ、ELID仕上げ、DLCコーティングの各シミュレーションで測定した摩擦係数の例である。また図7に、Grindシミュレーションの場合の平均摩擦係数の実験回数毎の変化を示している。図1から、カムとシリコンの接触面のはらまき状の接触面の変化、摩擦係数が回転速度の増大、接触荷重の減少または油温の低下すなわち粘度の増大に伴い小さくなる傾向を示している。実験回数毎の変化と時間経過と共に接触面の摩擦係数に影響があることが分かれる。


405
さらに図8は、ショック別に回転速度、接触荷重や油温の全実験条件で得られる平均摩擦係数を点平均した値の実験巡回数に伴う変化を調べたものである。図から、まず実験の巡回数の小さい初期から前半の段階について、通常研削した表面粗さの大きなGrindシムに比べ、DLCシムの方が摩擦は大幅に低いこと。またELIDシムも摩擦は段階に見られ、表面粗さを小さくし摩擦を低減させる方が効果は著しく大きいこと、すなわちDLCコーティングの摩擦低減効果は余り大きくないことなどから分かれる。

次に実験の巡回数の大きさの後半の断階を取り扱うと、GrindシムやELIDシムでは、実験の巡回と共に経時的に摩擦が減少しており、接触面の初期摩擦の進行やトライボ化学反応層の形成などの作用で経時的に混合潤滑下での固体接触の摩擦利と境界摩擦の接触断面が小さくなり摩擦が減少すること、さらにDLCシムでは、摩擦は経時的に急激に変わらず、Grindシムが実験巡回数約7回（おおよそ50時間）経過したときに低下度合が同じ大きさであることなどが分かれる。また実験後の摩擦面の観察や粗さ測定から、Grindシムで表面粗さRa:0.024μm、Rrms:0.030μmの静じみ状態へ進行し、DLCシムではコーティング層が孤立して無くなりRa:0.050μm、Rrms:0.073μmと実験初期より粗くなり下地に直接接触する状態の摩擦であることも分かった。

3.2. カム・シム間の摩擦と接触形態

図9に、実験巡回数の大きいときの測定値で値わちカム・シム接触面の駆動摩擦摩擦係数および摩擦係数のカム角度変化の代表的な例を示す。また、図10にカムとフォロワがすべり接触するカム／ステッパ－フォロワの場合の接触荷重、摩擦力および摩擦係数のカム角度変化の測定例[18]を示す。これらの摩擦変形を比較すると、図9のカム・シム摩擦の場合は、カムのノーズ部が接触するタイミング（カム角度で約30deg～30degの範囲）で減少する特性を示しており、図10の場合とくに低いカム軸回転速度の場合と異なる。これは、円弧状のシムがオフセットした位置でカムに接触するためにカムの摩耗力でローテーションし、転がり接触に近い接触形態となり摩擦が低くなるためであると考えられる。

さらに図11は、シム・ローテーションが摩擦変形に及ぼす影響を端的に示す測定の例である。実験巡回数が4回を過ぎた後回に進んだときに、不規則に変動したローテーションの作
Fig. 10 Friction diagrams under sliding contact between cam and slipper follower

Fig. 11 Change of friction diagram with shim rotation between 6th and 7th tests for ELID shim

Fig. 12 Valve lifter with offset shim

Fig. 13 Relation of eccentricity with Sommerfeld number

Fig. 14 Relation of oil-film thickness with bearing number

用が原因で生じた摩耗の不安定現象であると推察する。この場合に摩耗が変化する割合は、平均摩耗係数の大きさで約60～70%に及ぶ。したがって、ローテーションの作用で摩耗低減効果を増幅させることも可能であると言える。


3.3 シム・リフタ間の油膜形成

図12に、著者が新たに提案し研究開発して实用化を計り
図示のように、シム・リフタ間の油膜形成には比較的厚い油膜が観察されており、シム・コーテーションが阻害されることはないものと想定する。

4. 結論

上記のように動弁系の直動式 DOHC 用に開発中のオフセット・シム付きパルプ・リフタとカムの接触機構を模した摩耗試験機を用い、粘度等級 SAE5W-30 の Low-SAPS 対策 DH-2 級エンジン油で潤滑するときのカムとシムの間の摩耗力を測定し、その波形や接触時間帯に平均の摩耗係数値を評価して、シム表面の研削仕上げ方法や DLC コーティングの摩耗低減効果を調べた結果、以下のことが明らかになった。

（1）カムとシムの接触は、摩耗係数がカム軸回転速度の増大、接触荷重の減少またはオイル温度の低下すなわち粘度の増大に伴い小さくなる混合潤滑の状態である。

（2）実験初期に、表面を通常研削仕上げした粗いシムに比べ、DLC コーティングしたシムの方が摩耗は大幅に低い。

（3）通常研削仕上げしたシムに比べ、ELID 鏡面研削仕上げしたシムの方が摩耗は格段に低く、表面粗さを小さくし摩耗を低減させる方が効果は著しく大きい。それに比べて、DLC コーティングの摩耗低減効果はあまり大きくない。

（4）通常研削仕上げしたシムや鏡面研削仕上げしたシムでは、実験の進行と共に接触面の初期摩耗の進行とトライボ化學反応膜の形成などにより粘着的に摩耗が減少する。

（5）DLC コーティングしたシムの摩耗は、試験時にほとんど変化しない。おおよそ 50 時間（試験巡回数で約 7 回）経過後に、コーティング層が摩耗し、通常研削仕上げした面の粗いシムが選する摩耗と同じ大きさである。

（6）パルプ・リフタ上でカム軸方向へオフセットした円盤状のシムがカムとの接触でコーティングすると、カムとシムのすぺリ主体のすぺリ・転がり接触が転がり主体の転がり・すぺリ接触へと移り、摩耗が著しく低減される。

（7）シムのコーティングに伴う流体潤滑油膜形成を促し、シムの外側面とリフタ凹み部の内側面の間およびシムの裏面とリフタ凹み部の上面の間の摩耗を強力小さくする設計上の工夫が望まれる。

参考文献
(2) 副島光洋, ほか 5 名：エンジン油性状と表面処理によるカム・フォロワ摩擦低減, 自動車技術会論文集, Vol.41, No.3, p.641-646 (2010)
(9) 赤坂裕三, ほか 6 名：バルブ作動角ナビホイットニングシステム（VVEL）の開発, 自動車技術会論文集, Vol.40, No.4, p.979-984 (2009)
(14) 副島光洋, ほか 3 名：カム・タペット摩耗特性に関する実験的研究, 自動車学会論文集 (B 編), Vol.58, No.545, p.289-294 (1992)
(15) 副島光洋, ほか 5 名：動弁系カム・タペットの摩耗特性に関する研究, 自動車技術会論文集, Vol.32, No.1, p.53-68 (2001)
(17) 滝垣晃雄の滑滑理論, 滑滑ハンドブック, 東京, 養賢堂, 1987, p.120-131

自動車技術会論文集