Development of an Estimation Rack Bar Axial Force Caused by Stationary Steering
Keiko Nagasaka Junichi Nagai Masaki Yamamoto

An electric power steering system (E.P.S) is replacing a hydraulic power steering system recently. Estimation of rack bar axial force during stationary steering is indispensable for system design, because not only the capacity of the motor, but also the layout of suspension and the system depend on maximum rack bar axial force. In order to estimate the accurate rack bar axial force, new method is developed based on precise moving tire contact patch distorted figure. Additionally, the rack bar axial force fluctuation factors of tire trajectory prescribed suspension layout is investigated.

Key Words: (Standardized) Vehicle Dynamics, Suspension System, Steering System, Driving Stability (B1)

1. まえがき
近年、燃費改善や燃費上上の利点から電動式パワーステアリングシステム（以下EPS）の採用が拡大している。EPSは従来小型車を中心に採用されてきたが、徐々に大型車へも採用が拡大しており、特にハイブリッド車やEV車においては、エンジン駆動が無くてもアシストが可能なEPS搭載の必要性は大きい。その搭載検討においては、EPSモーター出力の設定が重要であり、設計初期段階で捉え切ることが可能なラックバー軸力を正確な見積もりが重要である。

本稿では、新たに考察した精度の良いラックバー軸力予測計算手法を述べると共に、それを基にしたラックバー軸力低減設計の例を報告する。

2. ラックバー軸力推定
2.1. 概説
図1にダブルウィッシュボーン式フロントサスペンション（操舵内輪側）に発生する力を示す。従来のラックバー軸力算出方法は、タイヤ接地力からの入力F(t)によって生じるキングピン軸周りモーメントM(θ)を求め、力のつもりでかかるラックバー軸力F(θ)を求めるが、この算出方法では実測との整合が取れない場合があった。

![Fig.1 Double wishbone type front suspension](image1)

その主な要因として、F(t)を測定する際、タイヤ接地面形状変化が報じられている点などが考えられた。そこで、より予測精度が高い新たな算出方法を考察した。

2.2. 従来の計算手法
懸架の時のキングピン軸周りのモーメントを概略推定する従来の計算手法について説明する。キングピン軸周りのモーメントの要因として、キングピン軸の傾きの上昇によってボディを持ち上げるためのジャッキアップモーメントMjと、タイヤと路面の摩擦によって発生するタイヤ摩擦モーメントMtを考慮する。

ジャッキアップモーメントMjは図2のようにキングピン軸とホイールセンタのオフセットによって生じるものであり、キングピン角やキャスター角が大きくなれば、微小項を省略して式(1)のように表現される。ただし、式(1)はキングピン軸は操舵に対応して動かないことを前提としているので、操舵と共にキングピン軸が大きく変化するようなサスペンションには適用できない。

\[M_j = W_t \cdot (d_5 \cdot \sin \theta) \]

\[\begin{align*}
\theta_5 &= \text{kingpin inclination,} \\
\theta_e &= \text{caster angle,} \\
d_5 &= \text{kingpin offset at wheel center,} \\
d_i &= \text{caster offset at wheel center,} \\
W_t &= \text{front axis vertical load,} \\
\delta &= \text{steer angle}
\end{align*} \]

![Fig.2 kingpin axis layout](image2)
タイヤと路面の摩擦モーメント \(M_t \) は以下のようによく計算される。
タイヤ接地中心はキングピン軸と接地面の交点回りに回転するが、ここでは簡単のため、タイヤが接地中心回りに回転する場合の摩擦モーメントのみを考慮する。つまり、タイヤ接地中心回りに回転するときの摩擦モーメントのみを考える。式(2)のように表される。タイヤ接地面形状はタイヤの接地幅と接地長で規定される長方形とし、面圧分布は図3に示すように積分方向を一定、前後方向は2次式と仮定する。このとき接地面は式(3)のようになる。

\[
M_t = \mu \int_{a}^{a+b} \int_{-b}^{b} p(x,y) \sqrt{x^2 + y^2} \, dx \, dy \tag{2}
\]

\[
p(x,y) = F_z \left(\frac{a}{2} - x \right) \frac{a}{2} + x \tag{3}
\]

\(W_t \): 車の重量 \\
\(F_z \): 車の垂直荷重（1 Wheel-W_t/2）

\(\mu \): 車の摩擦係数 \\
\(a \): 車の長さ \\
\(b \): 車の幅

![Fig.3 Tire contact patch](image)

式(2)(3)に必要なパラメータを代入すれば具体的に \(M_t \) を計算できる。
このように求めたジャッキアップモーメント \(M_j \) とタイヤ摩擦モーメント \(M_t \) に、サスペンション系の摩擦モーメント \(M_s \) を加えると、キングピン軸取りのモーメント \(M \) は以下となる。

\[
M = M_j + M_t + M_s \tag{4}
\]

そして、このキングピン軸モーメント \(M_s \) を、ナックルアーム長やステア角の影響などを考慮して適当な換算すればラックバー軸力が算出される。

以上が、従来の簡単計算方法であり、計算の見栄えに著しい活用できるが、操作に対してキングピン軸は動かないものとみなしている点や、タイヤの踏面の摩擦モーメントを無視する際に、タイヤ接地中心を基準に回転しているものとみなしている点、またタイヤ接地面形状はタイヤ接地長と接地幅から構成される長方形として黄銅時の接触形状を考慮していない点など厳密でない部分も多く、冒頭で述べたように実用結果を精度良く表現するという観点では不十分である。

2.3 新たな計算方法

図4にラックバー軸力計算のブロック図を示す。

ブロック図では、摩擦解析により、操動時のキングピン軸の動きを考えにいったジャッキアップモーメントによるラックバー軸力 \(F_t \) を求めるとともに、キングピン軸を中心として動くタイヤ接地中心の動きとラックバーストローク、角度、キャンバス曲げをブロック4のタイヤ摩擦力を求める際の入力項として用いる。ブロック5ではタイヤ摩擦力のラックバー軸力 \(F_i(t) \) を求めする。

このときタイヤ接地面の移動エネルギー \(E_i(t), E_i(t+\Delta t) \) と、ラックバーの移動エネルギー \(E_r(t), E_r(t+\Delta t) \) は等しいとする。

式(6)の \(F_i(t) \), 式(9)の \(F(t) \)の推定に際し、しきい値 \(W_i(t), W(t) \) ラックストローク \(RS \) は車両毎に一定の定数であるので、タイヤ接地面滑り量 \(S_i(t), S(t) \) の算出に重点をおいた。

![Fig.4 Calculation of rack bar axial force](image)
2.4. ダイヤ接地面形状の表現

ダイヤ接地面の滑り量を求める際、損えり時の時々刻々変化する接地面形状の表現が課題となるが、その形状表現を考慮したので、以下に説明する。

図5に示す様に損えり脚時には、サスペンション機構によりステア角と同時にキャンバ角変化が生じ、ダイヤ接地面形状が変化する。図6に示す様にキャンバ角変化は、キングピング軸の側面傾角であるキャスタ角に起因するので、一般的に操舵内側はポジティブキャンバ、操舵外側はネガティブキャンバとなる。図7に損えり時の接地面形状変化を示す。

2.5. ダイヤ接地面形状のモデル化

時々刻々変化するダイヤ接地面形状を表現するために接地面メッシュ状に分割し、微小領域のひずみ力の総和でエネルギーを計算することにした。式(11)は微小領域のダイヤ接地面滑り量である。

式(11)の総和からラックバー軸力F(in)を式(12)で算出し、これをラックストロックの刻みごとに繰り返す。この時、接地荷重W(in)は接地面部分で均一に分布すると仮定した。また、微小領域の滑り量SA(in)は、移動先もしくは移動元が接地していない場合0とした。（図8）

\[
\Delta S_{\text{in}}(i,j) = \sqrt{(X_i \cos \delta + Y_i \sin \delta + X_0)^2 + (X_i \sin \delta + Y_i \cos \delta + Y_0)^2}
\]

\[
F_{\text{in}} = \mu \frac{W(\text{in})}{n} \sum_{i=1}^{n} \Delta S_{\text{in}}(i,j) / \Delta R S
\]

式(13)はキャンペーン角がつけた際のタイヤ側面方向の各断面におけるダイヤ接地長の算出式である。その実測との比較結果を図10に示すが、ほぼ一致していることが確認できた。

\[
\begin{align*}
&\text{If } m < R, \quad 1 = 2m/(\tan \alpha) \\
&\text{If } m > R, \quad 1 = 0 \\
&m = \rho \cos \phi \\
&\phi : \text{camber angle} \\
&r : \text{tire static load radius} \\
&\alpha = \arcsin(m/R) \\
&h = r \sin \phi \\
&l = \text{-axis} \\
&x = r \cos \phi \\
&y = \text{-axis} \\
&W \quad \text{力} \\
&\text{upper} \\
&\text{front} \\
&\text{inner} \\
&\text{steer} \\
&\text{tire contact patch} \\
&\text{inner} \\
&\text{steer} \\
&\text{tire contact patch} \\
&\text{upper} \\
&\text{front} \\
&\text{tire contact patch} \]
\]
3. ラックバー駆動力低減検討

今回開発したラックバー駆動力計算手法を活用したラックバー駆動力低減方法について述べる。

前述の式(12)より、ラックバー軸力を低減するには、タイヤ接地面滑り量の総和 \(\Sigma \Delta S_i \) を小さくすれば良いことがわかる。

ここで、タイヤ接地中心の滑り量を \(\Delta S \) にすることが最適解となるのかを検証するために、接地面形状変化の影響について確認した。

3.1. タイヤ接地面形状変化がラックバー軸力に及ぼす影響

図14にラックバー軸力Fの個々の成分F(in), F(out), Fjを示す。Fはタイヤ摩擦力によって発生するF(in), F(out)に支配されており、特にF(in)はラックストロークに対し非線形的に増大していることがわかる。そこで、図14の点①, ②, ③に着目した。

![Fig.14 Rack bar axial force](image)

タイヤの摩擦力を変化させる主なサスペンション要素はタイヤ接地中心の動き量、ステア角変化、キャンパ角変化による接地面形状変化に分けられる。

ここではタイヤ接地形状の図形変位の変化に着目する。図14の点①, ②, ③での接地面形状変化とその図形変位C_1, C_2を図15に示す。

また、①\rightarrow② \rightarrow③ 間でのタイヤ接地面滑り量の総和をそれぞれ \(\Sigma \Delta S_i \), \(\Delta S \) とする。

ここで、タイヤ接地面形状変化の影響を考察する為にタイヤ接地中心は動かないものと仮定する。

![Fig.15 Tire contact patch](image)
図16,図17,図18はタイヤ接地面形状変化を、キャンパ角とステア角に分けて考察したものである。
図16より、キャンパ角変化のみではタイヤ接地面の変動の総和$\Sigma \Delta S_i = 0$である。また、図17のステア角変化のみでは接地面形状変化が無い為、ステア角増分が同じであれば、$\Sigma \Delta S_i$と$\Sigma \Delta S_i$は同じとなる。
ところが、図18に示すように、ステアとキャンパが同時に変化するとキャンパ角変化に伴い図11の回転中心がタイヤ接地面になる。ステア角変化に伴う振れ回りが大きくなる。$\Sigma \Delta S_i$はΣS_iより大きくなる。すなわちタイヤ接地面の動きを0にすることがラックバー軸力を最小にする条件ではないことが分る。
そこで、実際の車両モデルに置き換えて、タイヤ接地面の変動の総和を最小とする最適なタイヤ接地面の位置を考える。

3.2 移動エネルギーを最小にする最適解
図19はダブルウィッシュボーン式サスペンションでの揺れ切り時のタイヤ接地面の変動を示す。Oを起点にCからOに変動した場合のタイヤ接地面の変動の総和が最小となるタイヤ接地面の位置を求める。

O: center of tire contact
C1, C2: centroid of tire contact patch
$\delta 1$, $\delta 2$: steer angle

Y axis [mm]
X axis [mm]
Fig.19 Centroid of tire contact patch

タイヤ接地面の変動の総和を最小に抑えるためには回転中心を図11の位置にすることがなる。かつタイヤ接地面の変動が最小となる位置は最適位置となり、O' (Xo, Yo)は式(14), (15)で求まる。

$Xo = C1x \sin (\delta 2 - \delta 1) \sin \delta 2$ (14)
$Yo = C1x \sin (\delta 2 - \delta 1) \cos \delta 2$ (15)

3.3 検証
図20で、Aはタイヤ接地中心の方向が0の場合、Bはタイヤ接地中心の方向を前進した式(14), (15)で求めた場合のラックバー軸力をそれぞれ示す。

Fig.20 Rack bar axial force

Aは接地面形状変化に伴う重心の動きによってラックストローク40mm付近から非線形的に変動が増加しているが、Bは増加が少なく、重心位置変化の影響を抑えることが確認できた。

4. 実際の車両への積み込み
ラックバー軸力を低減するには、タイヤ接地中心の動き量と方向を制御しなければいけないことが分かった。ここでは実際の開発車両で検討した内容を例として紹介する。

ダブルジョイント式サスペンション図21では、仮想キングピン軸を取り入れ、アップペアとローペアのレイアウト変更によって操舵時のキングピン軸を変化させることができる。

Fig.21 Front suspension

図22,図23は直進時のキングピン軸を示す。各アームの動きによってキングピン軸が変化し、同時にタイヤ接地中心の動き、方向が変化する。
図24は式(14), (15)で算出したタイヤ接地中心の最適軌跡であるが、実際のサスペンションではキングピン軸レイアウトが他の車両運動性能からも決定される為、タイヤ接地中心の動きが最適軌跡に一致させることはできない。

そこで、実際の車両モデルでタイヤ接地中心の動き方向による感度を確認し（図24, 図25），できる限り最適方向に近づけた。図26はその際のタイヤ接地中心の動きであり、その効果を図27に示す。

5. まとめ
(1) 握え切り時のラックバー軸力を精度良く予測する計算手法を開発した。
(2) ラックバー軸力低減を可能とするタイヤ接地中心の最適軌跡を導出する式を考察した。
(3) サスペンションレイアウトを変更し、タイヤ接地中心の軌跡を最適軌跡に近づけ、ラックバー軸力が低減できることを実際に開発車両で確認した。

参考文献