ホイール・トラクタの傾斜方向作業性能の測定 (1)

理論的考察

草薙試験場山地支場

○吉村達生・大塚高男

[図1] 傾斜方向作業時にトラクタに作用する外力と拘束力

単一車輪の推力Fとスリップ率μの関数

(1)

\[F = (cS + c\lambda) \frac{Y}{T_{\max}} - R \]

ここで

\[\frac{Y}{T_{\max}} = \epsilon \]

と仮定して、2輪あるいは4輪駆動トラクタの傾斜方向作業性能を測定する。このに、\(\epsilon \)は黏着力に相当する限界無効、\(S \)は車輪の接地面積、\(R \)は車輪荷重、\(R = \mu \)はより抵抗（\(\mu \)はなら抵抗係数）。\(K1 \)と\(K2 \)は単一車輪の推力試験により得られる係数。\(Y_{\max} \)はYの最大値。FはRを含めた総和的な力である。

トラクタの運動方程式は、\(\omega \) = 2F1 + 2F2 - Pcosθ - W sinθ (3)

(1) 2輪方向の運動方程式および2点をモーメント中心に選んだ場合の力の平衡方程式は\(\frac{P}{\sin \phi} + \frac{W}{\cos \phi} = \lambda_1 + \lambda_2 \) (4)

\[P(x_1 + x_2) = \lambda_1 \cos \phi + \lambda_2 (x_1 + x_2) \]

\[W \left[\left(x_1 - x_2 \right) \cos \phi - y_1 \sin \phi \right] + \lambda_1 (x_1 + x_2 - x_2) + T_1 + T_2 = 0 \] (5)

この上、サフィックス1は前輪、2は後輪を意味する。車軸1点の質量重量モーメントをI、車軸回転角をθとすれば、車軸の回転運動方程式は

\[T_1 = 2I_1 \dot{\theta}_1 + 2A_1 F_1 + 2E_1 \lambda_1 \]

拘束力Fは式(3)、(4)、(5)から\(P \)を消去し、\(E = R / A_1 = \mu A_1 \)と仮定して

\[\lambda_1 = \frac{1}{\Delta} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \]

\[\lambda_2 = \frac{1}{\Delta} \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix} \]

\[\Delta = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \]

これに、\(a_{11} = 2 \left(cS + c\lambda_1 \right) \sin \phi - \cos \phi \), \(a_{12} = 2 \left(cS + c\lambda_2 \right) \sin \phi - \cos \phi \)
\(a_{21} = \{ x_1 + x_2 \} \sin \phi + Y_p \cos \phi \), \(a_{22} = \{ x_1 + x_2 \} \sin \phi + Y_p \cos \phi \)
\(b_1 = \{ \sin \phi \cos \phi \} \left(\frac{1}{\sin \phi} - \frac{1}{\cos \phi} \right) \)
\(b_2 = \{ \sin \phi \cos \phi \} \left(\frac{1}{\sin \phi} - \frac{1}{\cos \phi} \right) \)

トラクタ作業性能のうち、1軸力は\(D_p = P \cos \phi = \frac{2}{\cos \phi} \left(cS + \lambda_1 + \lambda_2 \right) \sin \phi - \cos \phi \)

\(W \sin \phi - A_2 \left(1 - A_2 / 100 \right) \theta_2 \)

\(\theta_2 W / 8 \) に比例する。2軸力は\(D_2 = D_p / \sqrt{5} \)、機関馬力は、\(D_2 \)トラクタの動力伝達率として\(H_e = \left(T \theta_1 + T \theta_2 \right) / 75 \)、これに式(3)、(7)を代入して\(H_e = A_2 \theta_2 / 75 \)。ただし、\(Q = \left(2I_1 \theta_1 / A_1 + 2I_2 \theta_2 / A_2 \right) \)。

軸力は\(Q = 100 H_T / H_e = 100 \times A_2 / 100 \)と仮定して、単一車輪の推力試験により得られる係数と、\(K1, K2 \)および\(\mu \)を用いて、傾斜地において実作業中の中のトラクタの諸性能を表す一つの係数を計算できる。