赤外線水分計の自己回帰による水分予測

Moisture Prediction by Self-regression on Infrared Moisture Balance

赤外線水分計は操作が簡単で精度も良いため、多くの分野で品質管理などの目的のために使われている。赤外線水分計には、乾燥できるものであるならその種類を問わないという利点がある。しかし、その反面、乾燥という手法を用いるために、どうしても測定時間がかかるかっただろう。このため、赤外線水分計で、もう少し迅速に水分を測定したい、との要求がかつてからあった。赤外線水分計の水分予測のための従来技術は、その大半が連続する2回分の測定値に適当な演算を施す手法で、精度の向上や測定時間の短縮には必ずしも十分な効果がなかった。

本稿では、赤外線水分計の測定時間を短縮し、かつ水分の予測精度を向上するために、新規模に採用された「自己回帰による水分予測」方法を中心に紹介する。

1. 水分の存在状態

親水性試料と水分との関わりは、「吸着」という現象で説明できる。ただしこの結合力の強いものから弱いものへ3つの区分がある。それぞれ「単分子層吸着」、「多分子層吸着」、「毛管凝縮水」と呼ばれている。

(1) 単分子層吸着

水分が物質分子と一種の化学反応ともみられる分子的親和力で結合している場合で、結合している水分子は空間的に制限された配置をしていて、自由水より密度が高くとなっている。この吸着は一層のみの水分子によるものと考えられている。

(2) 多分子層吸着

単分子層吸着をしている水分子が新たな吸着点となって水分の数が増加して行く結合状態で、水分の結合力は結合分子の増加にともなって弱くなって行く。

(3) 毛管凝縮水

多分子層吸着よりも水分子がさらに増加して一定の臨界量を超えると、水分子はついに液相を形成する。この状態の水分は、吸着帯分子と特別な結合力を持たずに存在する自由水と同じように、0℃の近傍で潜熱変化が認められる。そのため、正確には吸着水ではなく、吸着現象に付随して起こる水分の存在状態の1つと考えられている。

2. 乾燥による水分測定

親水性の試料はその構成粒子の表面から、多くは不連続で水分の吸放湿をしている。表面からの放湿が内部への吸湿よりも優先される「乾燥」と呼ばれる。一方、吸湿と放湿が均衡すると、「平衡水分」（あるいは「平衡含水率」）と呼ばれる。いずれにしても、試料と雰囲気の間に、水分についての試料固有の平衡状態（吸湿側と放湿側ではそれぞれ

(a) 水の単分子層で2つの親水性高分子がつながれているとき
(b) 水の多分子層で2つの親水性高分子がつながれているとき

図1 水分の存在状態
れぞれ平衡状態が異なるような「履歴効果」も存在する）が達成されるまで、吸湿あるいは放湿が継続的に行われる。

(1) 半解析系での乾燥
乾燥で平衡状態に達するまでの時間は、雰囲気の水蒸気圧と加熱温度が同じなら、密封系のほうが解釈系よりも早いと考えられる。このような場合でも、「平衡水分」は必ずしも一致しない。
一般的乾燥は半解析系で行われることが多い。
このとき、その解放程度によって乾燥速度や「平衡水分」は変化すると考えられる。乾燥機と外気の交換がわずかであるような場合、「平衡水分」は外気の相对湿度によって決定されるもので、外気との交換が少ない分だけ乾燥速度は遅くなることが予想できる。
(2) 乾燥のモデル式
いずれの場合でも、乾燥の終了は試料と雰囲気の水分子の分布の「平衡状態」と考えられる。しかも、この平衡状態への過程は「乾燥特性」の例、比較的簡単な実験式が提案されている。いくつかある実験式のうち、以下に示す「指針乾燥モデル」を採ってその適合性を考える。
＜指針乾燥モデル＞
\[
\frac{Yt-Ye}{Yo-Ye}=\exp(a \cdot t+b) \tag{1}
\]
ただし、\(t \) は時間のパラメータ、
\(Yo, Ye \) はそれぞれ初期水分と平衡水分、
\(Yt \) は \(t \) 時の水分、
\(a, b \) は未知の定数値とする。
このモデルでパラメータ \(a \) は負の値をとり、この値の絶対値が大きいほど乾燥は早く進行する。本稿では、これを「乾燥速度係数」と仮称する。
このモデル式の便利なところは、微分系にあり。つまり、(1)式の両辺の対数をとってから、時間 \(t \) で微分して整理すると、
\[
Yt-Ye=\frac{1}{a} \cdot \frac{dYt}{dt} \tag{2}
\]
ただし、\(a \neq 0 \) となる。
ここで、\(\frac{dYt}{dt} \) は「水分変化率」なので、
観察データ（\(\frac{dYt}{dt}, Yt \)）で数値の \(t \) について直線回帰を行えば、
\[
\frac{1}{a} \text{と} Ye \text{は、それぞれ回帰直線の勾配と切片として求められることになる。このことから、乾燥過程での重量変化のデータを取れば、乾燥の終点子測が可能となる。}
\]
\[
\ln(Ye-Yt)-\ln(Ye-Yo)=a \cdot t+b \quad \text{(3)}
\]
よって、
\[
\ln(Ye-Yt)=a \cdot t+b+\ln(Ye-Yo) \quad \text{(4)}
\]
を得る。
(4)式の右辺第2項と第3項はいずれも定数だから、この式は、時間と対数変換値 \(\ln (Ye-Yt) \) と間で直線関係があることを示している。
そのため、(2)式から \(Ye \) を求めておいて、(4)式の回帰定数 \(a, b \) を求めれば、任意時間での水分値が推定できることになる。これを利用して、乾燥過程での理論値と実測水分値が比較できる。
以下、乾燥系に対しては解放性の低い「通風循環型乾燥機」と、解放性の高い「赤外線水分計」の乾燥過程データを、指針モデル式に当てはめて比較する。ただし、いずれも乾燥初期の過程では、

\[
1n(Ye-Yt)-1n(Ye-Yo)=a \cdot t+b
\]

＜記号注＞

実測値……\(x \)
理論値……\(o \)

図2 乾燥機による粉砂玄米の乾燥過程の対数変換表示（加熱温度の設定：135℃）
図3 FD-240の乾燥過程
（試料：粉碎玄米、湿度：120℃、時間：30秒）
気温度や試料温度が安定していないことが予想されるので、この過程をデータの検証から省く。

（3）通風循環型乾燥機での乾燥
タバコ製造所製のバーナークオーブン（PS-112型）を機内温度を135℃に設定したうえで、
玄米粉碎試料を1点および5g程度秤取したものを10点まとめて機内に入れて乾燥した。乾燥過程のデータとしては、10試料が全て同一水分であると仮定し、監視時間内での一定時間を任意の試料を抽出して重量計測を行い、それぞれの初期重量と比較して水分を求め、そのときの水分とした。

図4 赤外線水分計 FD-240
この観測データに指数乾燥モデルを適用させ、最小自乗法による回帰分析を施して、理論値を求めた。その結果を図2に示す。
図2の×印と○印はそれぞれ、実測水分値と指数乾燥モデルから推定された理論値を示す。なお、この結果から、乾燥速度係数は0.287と推定できた。

（4）赤外線水分計での乾燥
上記（3）で用いたものと同じ試料5gほどを、弊社製赤外線水分計FD-240（本年6月から新発売）で設定温度12℃で乾燥させ、乾燥過程を調べた。その結果を図3に示す（時間単位は秒）。
図3に実測値（×印）と理論値（○印）を併記

表1 FD-240による水分予測

<table>
<thead>
<tr>
<th>試 料</th>
<th>点数</th>
<th>水分範囲（％）</th>
<th>乾燥までの平均時間（分）</th>
<th>FD-240の測定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>補正値（％）</td>
</tr>
<tr>
<td>沃ーニシップ</td>
<td>9</td>
<td>5～15</td>
<td>18.1</td>
<td>0.86</td>
</tr>
<tr>
<td>小麦粉（薄粉）</td>
<td>18</td>
<td>12～18</td>
<td>12.0</td>
<td>-0.56</td>
</tr>
<tr>
<td>小麦粉（強力粉）</td>
<td>15</td>
<td>11～20</td>
<td>11.7</td>
<td>-0.54</td>
</tr>
<tr>
<td>小麦粉（中力粉）</td>
<td>18</td>
<td>11～20</td>
<td>11.8</td>
<td>-0.39</td>
</tr>
<tr>
<td>粉砕した粉</td>
<td>18</td>
<td>12～20</td>
<td>17.1</td>
<td>0.84</td>
</tr>
<tr>
<td>粉砕した小麦</td>
<td>18</td>
<td>12～22</td>
<td>13.9</td>
<td>0.16</td>
</tr>
</tbody>
</table>
する。なお、この結果の時間単位を図2の結果と合わせると、乾燥速度係数は－105と推定できた。

3. 従来の乾燥法と恒量乾燥の予測値の比較
赤外線水分計で測定する大半の試料は、既に何かの対照とする水分測定法を持っている。そこで、赤外線水分計の値で対照法の値を代替える場合、これらの値の間に整合性が必要となる。

(1) 予測値と系統誤差
試料と水分の存在状態から考慮すると、明確に差があると思われるの、「単分子層吸着」と「多分子層吸着」の間であろう。乾燥過程での水分の蒸発もこれに随伴することが考えられる。実際、赤外線水分計による乾燥過程の中間と後期では、明らかに乾燥速度係数が異なる（図3）。乾燥過程の中間で試料の最終水分を予測する場合、中の乾燥過程で予測した値と後期の水分が収束する値の格差が問題となる。もし、この関係が不規則な変動を含んだものであったら、最終水分値の予測は、この不規則な変動を含んだものになってしまう。しかし、ここで、「単分子層吸着」の水分の存在状態が、試料の固有の結合状態であるならば、先の格差は試料の種類による系統誤差となって、予備実験によって補正できる見通しがある。

(2) 適用例
赤外線水分計 FD—240 を図4に示す。

本器は乾燥中の重量データを10秒ごとに測定し、連続12点の水分値から自己回帰分析を行い、1つの恒量予測値を求めることができる。この恒量予測値の連続6回の最大変動幅が許容範囲に収まったら、最終の恒量予測値を「水分予測値」として採用する機能を持っている。

この機能で測定した、いくつかの穀物試料の測定結果（加熱設定温度110℃）を表1に示す。
なお、本器は試料による水分予測値と恒量予測値の格差を「補正値」として登録することがで、それによって系統誤差は予測の都度補正される。恒量予測値と対照法による測定値との間に一定の相関があれば、本機能の適用によって、水分値の予測精度の向上と測定時間の短縮が期待できる。

水分測定に携わっておられる多くの技術者の方々に、本器をご活用いただければ幸甚と存じます。

4. 謝辞
執筆にあたり多くの助言をいただいた、株式会社ケト科学研究所・技術部・戸木久仁氏、同・秋山弘子氏、同・菊池文秀氏、同・中川裕己氏、同・芹澤健治氏に深き感謝をいたします。

【ケト科学研究所 渡辺利通
（原稿受理：1996年6月28日）】